2025-06-07 14:01:20 +08:00
|
|
|
"""
|
|
|
|
|
Moving Average Convergence Divergence (MACD) indicator implementation.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
import pandas as pd
|
|
|
|
|
|
|
|
|
|
from ..base import BaseIndicator
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class MACDIndicator(BaseIndicator):
|
|
|
|
|
"""
|
|
|
|
|
Moving Average Convergence Divergence (MACD) technical indicator.
|
|
|
|
|
|
|
|
|
|
Calculates trend-following momentum indicator that shows the relationship
|
|
|
|
|
between two moving averages of a security's price.
|
|
|
|
|
Handles sparse data appropriately without interpolation.
|
|
|
|
|
"""
|
|
|
|
|
|
|
|
|
|
def calculate(self, df: pd.DataFrame, fast_period: int = 12,
|
|
|
|
|
slow_period: int = 26, signal_period: int = 9,
|
2025-06-09 16:28:16 +08:00
|
|
|
price_column: str = 'close') -> pd.DataFrame:
|
2025-06-07 14:01:20 +08:00
|
|
|
"""
|
|
|
|
|
Calculate Moving Average Convergence Divergence (MACD).
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
df: DataFrame with OHLCV data
|
|
|
|
|
fast_period: Fast EMA period (default 12)
|
|
|
|
|
slow_period: Slow EMA period (default 26)
|
|
|
|
|
signal_period: Signal line EMA period (default 9)
|
|
|
|
|
price_column: Price column to use ('open', 'high', 'low', 'close')
|
|
|
|
|
|
|
|
|
|
Returns:
|
2025-06-09 16:28:16 +08:00
|
|
|
DataFrame with MACD values and metadata, indexed by timestamp
|
2025-06-07 14:01:20 +08:00
|
|
|
"""
|
|
|
|
|
# Validate input data
|
|
|
|
|
if not self.validate_dataframe(df, slow_period):
|
2025-06-09 16:28:16 +08:00
|
|
|
return pd.DataFrame()
|
2025-06-07 14:01:20 +08:00
|
|
|
try:
|
2025-06-09 16:28:16 +08:00
|
|
|
df = df.copy()
|
|
|
|
|
df['macd'] = df[price_column].ewm(span=fast_period, adjust=False).mean() - \
|
|
|
|
|
df[price_column].ewm(span=slow_period, adjust=False).mean()
|
2025-06-07 14:01:20 +08:00
|
|
|
df['signal'] = df['macd'].ewm(span=signal_period, adjust=False).mean()
|
|
|
|
|
df['histogram'] = df['macd'] - df['signal']
|
2025-06-09 16:28:16 +08:00
|
|
|
# Only keep rows with valid MACD, and only 'timestamp', 'macd', 'signal', 'histogram' columns
|
|
|
|
|
result_df = df.loc[df['macd'].notna() & df['signal'].notna() & df['histogram'].notna(), ['timestamp', 'macd', 'signal', 'histogram']].copy()
|
|
|
|
|
# Only keep rows after enough data for MACD and signal
|
|
|
|
|
min_required = max(slow_period, signal_period)
|
|
|
|
|
result_df = result_df.iloc[min_required-1:]
|
|
|
|
|
result_df.set_index('timestamp', inplace=True)
|
|
|
|
|
return result_df
|
|
|
|
|
except Exception:
|
|
|
|
|
return pd.DataFrame()
|