TCPDashboard/docs/components/charts/configuration.md

752 lines
20 KiB
Markdown
Raw Normal View History

# Chart Configuration System
The Chart Configuration System provides comprehensive management of chart settings, indicator definitions, and trading strategy configurations. It includes schema validation, default presets, and extensible configuration patterns.
## Table of Contents
- [Overview](#overview)
- [Indicator Definitions](#indicator-definitions)
- [Default Configurations](#default-configurations)
- [Strategy Configurations](#strategy-configurations)
- [Validation System](#validation-system)
- [Configuration Files](#configuration-files)
- [Usage Examples](#usage-examples)
- [Extension Guide](#extension-guide)
## Overview
The configuration system is built around three core concepts:
1. **Indicator Definitions** - Schema and validation for technical indicators
2. **Default Configurations** - Pre-built indicator presets organized by category
3. **Strategy Configurations** - Complete chart setups for trading strategies
### Architecture
```
components/charts/config/
├── indicator_defs.py # Core schemas and validation
├── defaults.py # Default indicator presets
├── strategy_charts.py # Strategy configurations
├── validation.py # Validation system
├── example_strategies.py # Real-world examples
└── __init__.py # Package exports
```
## Indicator Definitions
### Core Classes
#### `ChartIndicatorConfig`
The main configuration class for individual indicators:
```python
@dataclass
class ChartIndicatorConfig:
indicator_type: IndicatorType
parameters: Dict[str, Any]
display_name: str
color: str
line_style: LineStyle = LineStyle.SOLID
line_width: int = 2
display_type: DisplayType = DisplayType.OVERLAY
opacity: float = 1.0
show_legend: bool = True
```
#### Enums
**IndicatorType**
```python
class IndicatorType(str, Enum):
SMA = "sma"
EMA = "ema"
RSI = "rsi"
MACD = "macd"
BOLLINGER_BANDS = "bollinger_bands"
VOLUME = "volume"
```
**DisplayType**
```python
class DisplayType(str, Enum):
OVERLAY = "overlay" # Overlaid on price chart
SUBPLOT = "subplot" # Separate subplot
HISTOGRAM = "histogram" # Histogram display
```
**LineStyle**
```python
class LineStyle(str, Enum):
SOLID = "solid"
DASHED = "dash"
DOTTED = "dot"
DASH_DOT = "dashdot"
```
### Schema Validation
#### `IndicatorParameterSchema`
Defines validation rules for indicator parameters:
```python
@dataclass
class IndicatorParameterSchema:
name: str
type: type
required: bool = True
min_value: Optional[Union[int, float]] = None
max_value: Optional[Union[int, float]] = None
default_value: Any = None
description: str = ""
valid_values: Optional[List[Any]] = None
```
#### `IndicatorSchema`
Complete schema for an indicator type:
```python
@dataclass
class IndicatorSchema:
indicator_type: IndicatorType
display_type: DisplayType
parameters: List[IndicatorParameterSchema]
description: str
calculation_description: str
usage_notes: List[str] = field(default_factory=list)
```
### Schema Definitions
The system includes complete schemas for all supported indicators:
```python
INDICATOR_SCHEMAS = {
IndicatorType.SMA: IndicatorSchema(
indicator_type=IndicatorType.SMA,
display_type=DisplayType.OVERLAY,
parameters=[
IndicatorParameterSchema(
name="period",
type=int,
min_value=1,
max_value=200,
default_value=20,
description="Number of periods for the moving average"
),
IndicatorParameterSchema(
name="price_column",
type=str,
required=False,
default_value="close",
valid_values=["open", "high", "low", "close"],
description="Price column to use for calculation"
)
],
description="Simple Moving Average - arithmetic mean of prices",
calculation_description="Sum of closing prices divided by period"
),
# ... more schemas
}
```
### Utility Functions
#### Validation Functions
```python
# Validate individual indicator configuration
def validate_indicator_configuration(config: ChartIndicatorConfig) -> tuple[bool, List[str]]
# Create indicator configuration with validation
def create_indicator_config(
indicator_type: IndicatorType,
parameters: Dict[str, Any],
**kwargs
) -> tuple[Optional[ChartIndicatorConfig], List[str]]
# Get schema for indicator type
def get_indicator_schema(indicator_type: IndicatorType) -> Optional[IndicatorSchema]
# Get available indicator types
def get_available_indicator_types() -> List[IndicatorType]
# Validate parameters for specific type
def validate_parameters_for_type(
indicator_type: IndicatorType,
parameters: Dict[str, Any]
) -> tuple[bool, List[str]]
```
## Default Configurations
### Organization
Default configurations are organized by category and trading strategy:
#### Categories
```python
class IndicatorCategory(str, Enum):
TREND = "trend"
MOMENTUM = "momentum"
VOLATILITY = "volatility"
VOLUME = "volume"
SUPPORT_RESISTANCE = "support_resistance"
```
#### Trading Strategies
```python
class TradingStrategy(str, Enum):
SCALPING = "scalping"
DAY_TRADING = "day_trading"
SWING_TRADING = "swing_trading"
POSITION_TRADING = "position_trading"
MOMENTUM = "momentum"
MEAN_REVERSION = "mean_reversion"
```
### Indicator Presets
#### `IndicatorPreset`
Container for pre-configured indicators:
```python
@dataclass
class IndicatorPreset:
name: str
config: ChartIndicatorConfig
category: IndicatorCategory
description: str
recommended_timeframes: List[str]
suitable_strategies: List[TradingStrategy]
notes: List[str] = field(default_factory=list)
```
### Available Presets
**Trend Indicators (13 presets)**
- `sma_5`, `sma_10`, `sma_20`, `sma_50`, `sma_100`, `sma_200`
- `ema_5`, `ema_12`, `ema_21`, `ema_26`, `ema_50`, `ema_100`, `ema_200`
**Momentum Indicators (9 presets)**
- `rsi_7`, `rsi_14`, `rsi_21`
- `macd_5_13_4`, `macd_8_17_6`, `macd_12_26_9`, `macd_19_39_13`
**Volatility Indicators (4 presets)**
- `bb_10_15`, `bb_20_15`, `bb_20_20`, `bb_50_20`
### Color Schemes
Organized color palettes by category:
```python
CATEGORY_COLORS = {
IndicatorCategory.TREND: {
"primary": "#2E86C1", # Blue
"secondary": "#5DADE2", # Light Blue
"accent": "#1F618D" # Dark Blue
},
IndicatorCategory.MOMENTUM: {
"primary": "#E74C3C", # Red
"secondary": "#F1948A", # Light Red
"accent": "#C0392B" # Dark Red
},
# ... more colors
}
```
### Access Functions
```python
# Get all default indicators
def get_all_default_indicators() -> Dict[str, IndicatorPreset]
# Filter by category
def get_indicators_by_category(category: IndicatorCategory) -> Dict[str, IndicatorPreset]
# Filter by timeframe
def get_indicators_for_timeframe(timeframe: str) -> Dict[str, IndicatorPreset]
# Get strategy-specific indicators
def get_strategy_indicators(strategy: TradingStrategy) -> Dict[str, IndicatorPreset]
# Create custom preset
def create_custom_preset(
name: str,
indicator_type: IndicatorType,
parameters: Dict[str, Any],
category: IndicatorCategory,
**kwargs
) -> tuple[Optional[IndicatorPreset], List[str]]
```
## Strategy Configurations
### Core Classes
#### `StrategyChartConfig`
Complete chart configuration for a trading strategy:
```python
@dataclass
class StrategyChartConfig:
strategy_name: str
strategy_type: TradingStrategy
description: str
timeframes: List[str]
# Chart layout
layout: ChartLayout = ChartLayout.MAIN_WITH_SUBPLOTS
main_chart_height: float = 0.7
# Indicators
overlay_indicators: List[str] = field(default_factory=list)
subplot_configs: List[SubplotConfig] = field(default_factory=list)
# Style
chart_style: ChartStyle = field(default_factory=ChartStyle)
# Metadata
created_at: Optional[datetime] = None
updated_at: Optional[datetime] = None
version: str = "1.0"
tags: List[str] = field(default_factory=list)
```
#### `SubplotConfig`
Configuration for chart subplots:
```python
@dataclass
class SubplotConfig:
subplot_type: SubplotType
height_ratio: float = 0.3
indicators: List[str] = field(default_factory=list)
title: Optional[str] = None
y_axis_label: Optional[str] = None
show_grid: bool = True
show_legend: bool = True
background_color: Optional[str] = None
```
#### `ChartStyle`
Comprehensive chart styling:
```python
@dataclass
class ChartStyle:
theme: str = "plotly_white"
background_color: str = "#ffffff"
grid_color: str = "#e6e6e6"
text_color: str = "#2c3e50"
font_family: str = "Arial, sans-serif"
font_size: int = 12
candlestick_up_color: str = "#26a69a"
candlestick_down_color: str = "#ef5350"
volume_color: str = "#78909c"
show_volume: bool = True
show_grid: bool = True
show_legend: bool = True
show_toolbar: bool = True
```
### Default Strategy Configurations
Pre-built strategy configurations for common trading approaches:
1. **Scalping Strategy**
- Ultra-fast indicators (EMA 5, 12, 21)
- Fast RSI (7) and MACD (5,13,4)
- 1m-5m timeframes
2. **Day Trading Strategy**
- Balanced indicators (SMA 20, EMA 12/26, BB 20,2.0)
- Standard RSI (14) and MACD (12,26,9)
- 5m-1h timeframes
3. **Swing Trading Strategy**
- Longer-term indicators (SMA 50, EMA 21/50, BB 20,2.0)
- Standard momentum indicators
- 1h-1d timeframes
### Configuration Functions
```python
# Create default strategy configurations
def create_default_strategy_configurations() -> Dict[str, StrategyChartConfig]
# Create custom strategy
def create_custom_strategy_config(
strategy_name: str,
strategy_type: TradingStrategy,
description: str,
timeframes: List[str],
overlay_indicators: List[str],
subplot_configs: List[Dict[str, Any]],
**kwargs
) -> tuple[Optional[StrategyChartConfig], List[str]]
# JSON import/export
def load_strategy_config_from_json(json_data: Union[str, Dict[str, Any]]) -> tuple[Optional[StrategyChartConfig], List[str]]
def export_strategy_config_to_json(config: StrategyChartConfig) -> str
# Access functions
def get_strategy_config(strategy_name: str) -> Optional[StrategyChartConfig]
def get_all_strategy_configs() -> Dict[str, StrategyChartConfig]
def get_available_strategy_names() -> List[str]
```
## Validation System
### Validation Rules
The system includes 10 comprehensive validation rules:
1. **REQUIRED_FIELDS** - Validates essential configuration fields
2. **HEIGHT_RATIOS** - Ensures chart height ratios sum correctly
3. **INDICATOR_EXISTENCE** - Checks indicator availability
4. **TIMEFRAME_FORMAT** - Validates timeframe patterns
5. **CHART_STYLE** - Validates styling options
6. **SUBPLOT_CONFIG** - Validates subplot configurations
7. **STRATEGY_CONSISTENCY** - Checks strategy-timeframe alignment
8. **PERFORMANCE_IMPACT** - Warns about performance issues
9. **INDICATOR_CONFLICTS** - Detects redundant indicators
10. **RESOURCE_USAGE** - Estimates resource consumption
### Validation Classes
#### `ValidationReport`
Comprehensive validation results:
```python
@dataclass
class ValidationReport:
is_valid: bool
errors: List[ValidationIssue] = field(default_factory=list)
warnings: List[ValidationIssue] = field(default_factory=list)
info: List[ValidationIssue] = field(default_factory=list)
debug: List[ValidationIssue] = field(default_factory=list)
validation_time: Optional[datetime] = None
rules_applied: Set[ValidationRule] = field(default_factory=set)
```
#### `ValidationIssue`
Individual validation issue:
```python
@dataclass
class ValidationIssue:
level: ValidationLevel
rule: ValidationRule
message: str
field_path: str = ""
suggestion: Optional[str] = None
auto_fix: Optional[str] = None
context: Dict[str, Any] = field(default_factory=dict)
```
### Validation Usage
```python
from components.charts.config import validate_configuration
# Comprehensive validation
report = validate_configuration(config)
# Check results
if report.is_valid:
print("✅ Configuration is valid")
else:
print("❌ Configuration has errors:")
for error in report.errors:
print(f" • {error}")
# Handle warnings
if report.warnings:
print("⚠️ Warnings:")
for warning in report.warnings:
print(f" • {warning}")
```
## Configuration Files
### File Structure
```
components/charts/config/
├── __init__.py # Package exports and public API
├── indicator_defs.py # Core indicator schemas and validation
├── defaults.py # Default indicator presets and categories
├── strategy_charts.py # Strategy configuration classes and defaults
├── validation.py # Validation system and rules
└── example_strategies.py # Real-world trading strategy examples
```
### Key Exports
From `__init__.py`:
```python
# Core classes
from .indicator_defs import (
IndicatorType, DisplayType, LineStyle, PriceColumn,
IndicatorParameterSchema, IndicatorSchema, ChartIndicatorConfig
)
# Default configurations
from .defaults import (
IndicatorCategory, TradingStrategy, IndicatorPreset,
get_all_default_indicators, get_indicators_by_category
)
# Strategy configurations
from .strategy_charts import (
ChartLayout, SubplotType, SubplotConfig, ChartStyle, StrategyChartConfig,
create_default_strategy_configurations
)
# Validation system
from .validation import (
ValidationLevel, ValidationRule, ValidationIssue, ValidationReport,
validate_configuration
)
# Example strategies
from .example_strategies import (
StrategyExample, create_ema_crossover_strategy,
get_all_example_strategies
)
```
## Usage Examples
### Example 1: Creating Custom Indicator
```python
from components.charts.config import (
create_indicator_config, IndicatorType
)
# Create custom EMA configuration
config, errors = create_indicator_config(
indicator_type=IndicatorType.EMA,
parameters={"period": 21, "price_column": "close"},
display_name="EMA 21",
color="#2E86C1",
line_width=2
)
if config:
print(f"Created: {config.display_name}")
else:
print(f"Errors: {errors}")
```
### Example 2: Using Default Presets
```python
from components.charts.config import (
get_all_default_indicators,
get_indicators_by_category,
IndicatorCategory
)
# Get all available indicators
all_indicators = get_all_default_indicators()
print(f"Available indicators: {len(all_indicators)}")
# Get trend indicators only
trend_indicators = get_indicators_by_category(IndicatorCategory.TREND)
for name, preset in trend_indicators.items():
print(f"{name}: {preset.description}")
```
### Example 3: Strategy Configuration
```python
from components.charts.config import (
create_custom_strategy_config,
TradingStrategy
)
# Create custom momentum strategy
config, errors = create_custom_strategy_config(
strategy_name="Custom Momentum",
strategy_type=TradingStrategy.MOMENTUM,
description="Fast momentum trading strategy",
timeframes=["5m", "15m"],
overlay_indicators=["ema_8", "ema_21"],
subplot_configs=[{
"subplot_type": "rsi",
"height_ratio": 0.2,
"indicators": ["rsi_7"]
}]
)
if config:
print(f"Created strategy: {config.strategy_name}")
is_valid, validation_errors = config.validate()
if is_valid:
print("Strategy is valid!")
else:
print(f"Validation errors: {validation_errors}")
```
### Example 4: Comprehensive Validation
```python
from components.charts.config import (
validate_configuration,
ValidationRule
)
# Validate with specific rules
rules = {ValidationRule.REQUIRED_FIELDS, ValidationRule.HEIGHT_RATIOS}
report = validate_configuration(config, rules=rules)
# Detailed error handling
for error in report.errors:
print(f"ERROR: {error.message}")
if error.suggestion:
print(f" Suggestion: {error.suggestion}")
if error.auto_fix:
print(f" Auto-fix: {error.auto_fix}")
# Performance warnings
performance_issues = report.get_issues_by_rule(ValidationRule.PERFORMANCE_IMPACT)
if performance_issues:
print(f"Performance concerns: {len(performance_issues)}")
```
## Extension Guide
### Adding New Indicators
1. **Define Indicator Type**
```python
# Add to IndicatorType enum
class IndicatorType(str, Enum):
# ... existing types
STOCHASTIC = "stochastic"
```
2. **Create Schema**
```python
# Add to INDICATOR_SCHEMAS
INDICATOR_SCHEMAS[IndicatorType.STOCHASTIC] = IndicatorSchema(
indicator_type=IndicatorType.STOCHASTIC,
display_type=DisplayType.SUBPLOT,
parameters=[
IndicatorParameterSchema(
name="k_period",
type=int,
min_value=1,
max_value=100,
default_value=14
),
# ... more parameters
],
description="Stochastic Oscillator",
calculation_description="Momentum indicator comparing closing price to price range"
)
```
3. **Create Default Presets**
```python
# Add to defaults.py
def create_momentum_indicators():
# ... existing indicators
indicators["stoch_14"] = IndicatorPreset(
name="stoch_14",
config=create_indicator_config(
IndicatorType.STOCHASTIC,
{"k_period": 14, "d_period": 3},
display_name="Stochastic %K(14,%D(3))",
color=CATEGORY_COLORS[IndicatorCategory.MOMENTUM]["primary"]
)[0],
category=IndicatorCategory.MOMENTUM,
description="Standard Stochastic oscillator",
recommended_timeframes=["15m", "1h", "4h"],
suitable_strategies=[TradingStrategy.SWING_TRADING]
)
```
### Adding New Validation Rules
1. **Define Rule**
```python
# Add to ValidationRule enum
class ValidationRule(str, Enum):
# ... existing rules
CUSTOM_RULE = "custom_rule"
```
2. **Implement Validation**
```python
# Add to ConfigurationValidator
def _validate_custom_rule(self, config: StrategyChartConfig, report: ValidationReport) -> None:
# Custom validation logic
if some_condition:
report.add_issue(ValidationIssue(
level=ValidationLevel.WARNING,
rule=ValidationRule.CUSTOM_RULE,
message="Custom validation message",
suggestion="Suggested fix"
))
```
3. **Add to Validator**
```python
# Add to validate_strategy_config method
if ValidationRule.CUSTOM_RULE in self.enabled_rules:
self._validate_custom_rule(config, report)
```
### Adding New Strategy Types
1. **Define Strategy Type**
```python
# Add to TradingStrategy enum
class TradingStrategy(str, Enum):
# ... existing strategies
GRID_TRADING = "grid_trading"
```
2. **Create Strategy Configuration**
```python
# Add to create_default_strategy_configurations()
strategy_configs["grid_trading"] = StrategyChartConfig(
strategy_name="Grid Trading Strategy",
strategy_type=TradingStrategy.GRID_TRADING,
description="Grid trading with support/resistance levels",
timeframes=["1h", "4h"],
overlay_indicators=["sma_20", "sma_50"],
# ... complete configuration
)
```
3. **Add Example Strategy**
```python
# Create in example_strategies.py
def create_grid_trading_strategy() -> StrategyExample:
config = StrategyChartConfig(...)
return StrategyExample(
config=config,
description="Grid trading strategy description...",
difficulty="Intermediate",
risk_level="Medium"
)
```
The configuration system is designed to be highly extensible while maintaining type safety and comprehensive validation. All additions should follow the established patterns and include appropriate tests.