TCPDashboard/tests/data/indicators/test_indicators.py

342 lines
14 KiB
Python
Raw Normal View History

"""
Unit tests for technical indicators module.
Tests verify that all technical indicators work correctly with sparse OHLCV data
and handle edge cases appropriately.
"""
import pytest
from datetime import datetime, timezone, timedelta
from decimal import Decimal
import pandas as pd
import numpy as np
from data.common.indicators import (
TechnicalIndicators,
IndicatorResult,
create_default_indicators_config,
validate_indicator_config
)
from data.common.data_types import OHLCVCandle
class TestTechnicalIndicators:
"""Test suite for TechnicalIndicators class."""
@pytest.fixture
def sample_candles(self):
"""Create sample OHLCV candles for testing."""
candles = []
base_time = datetime(2024, 1, 1, 9, 0, 0, tzinfo=timezone.utc)
# Create 30 candles with realistic price movement
prices = [100.0, 101.0, 102.5, 101.8, 103.0, 104.2, 103.8, 105.0, 104.5, 106.0,
107.5, 108.0, 107.2, 109.0, 108.5, 110.0, 109.8, 111.0, 110.5, 112.0,
111.8, 113.0, 112.5, 114.0, 113.2, 115.0, 114.8, 116.0, 115.5, 117.0]
for i, price in enumerate(prices):
candle = OHLCVCandle(
symbol='BTC-USDT',
timeframe='1m',
start_time=base_time + timedelta(minutes=i),
end_time=base_time + timedelta(minutes=i+1),
open=Decimal(str(price - 0.2)),
high=Decimal(str(price + 0.5)),
low=Decimal(str(price - 0.5)),
close=Decimal(str(price)),
volume=Decimal('1000'),
trade_count=10,
exchange='test',
is_complete=True
)
candles.append(candle)
return candles
@pytest.fixture
def sparse_candles(self):
"""Create sparse OHLCV candles (with gaps) for testing."""
candles = []
base_time = datetime(2024, 1, 1, 9, 0, 0, tzinfo=timezone.utc)
# Create candles with time gaps (sparse data)
gap_minutes = [0, 1, 3, 5, 8, 10, 15, 18, 22, 25]
prices = [100.0, 101.0, 102.0, 103.0, 104.0, 105.0, 106.0, 107.0, 108.0, 109.0]
for i, (gap, price) in enumerate(zip(gap_minutes, prices)):
candle = OHLCVCandle(
symbol='BTC-USDT',
timeframe='1m',
start_time=base_time + timedelta(minutes=gap),
end_time=base_time + timedelta(minutes=gap+1),
open=Decimal(str(price - 0.2)),
high=Decimal(str(price + 0.5)),
low=Decimal(str(price - 0.5)),
close=Decimal(str(price)),
volume=Decimal('1000'),
trade_count=10,
exchange='test',
is_complete=True
)
candles.append(candle)
return candles
@pytest.fixture
def indicators(self):
"""Create TechnicalIndicators instance."""
return TechnicalIndicators()
def test_initialization(self, indicators):
"""Test TechnicalIndicators initialization."""
assert indicators is not None
assert indicators.logger is None
def test_prepare_dataframe(self, indicators, sample_candles):
"""Test DataFrame preparation from OHLCV candles."""
df = indicators._prepare_dataframe_from_list(sample_candles)
assert not df.empty
assert len(df) == len(sample_candles)
assert list(df.columns) == ['symbol', 'timeframe', 'open', 'high', 'low', 'close', 'volume', 'trade_count', 'timestamp']
assert df.index.name == 'timestamp'
# Check that timestamps are sorted
assert df.index.is_monotonic_increasing
def test_prepare_dataframe_empty(self, indicators):
"""Test DataFrame preparation with empty candles list."""
df = indicators._prepare_dataframe_from_list([])
assert df.empty
def test_sma_calculation(self, indicators, sample_candles):
"""Test Simple Moving Average calculation (now returns DataFrame)."""
period = 5
df = indicators._prepare_dataframe_from_list(sample_candles)
df['timestamp'] = df.index
result_df = indicators.sma(df, period)
assert isinstance(result_df, pd.DataFrame)
assert not result_df.empty
assert 'sma' in result_df.columns
# Find the correct rolling window for the first SMA value
first_ts = result_df.index[0]
first_idx = [candle.end_time for candle in sample_candles].index(first_ts)
window_closes = [float(candle.close) for candle in sample_candles[first_idx - period + 1:first_idx + 1]]
expected_sma = sum(window_closes) / len(window_closes)
assert abs(result_df.iloc[0]['sma'] - expected_sma) < 0.001
def test_sma_insufficient_data(self, indicators, sample_candles):
"""Test SMA with insufficient data (now returns DataFrame)."""
period = 50 # More than available candles
df = indicators._prepare_dataframe_from_list(sample_candles)
df['timestamp'] = df.index
result_df = indicators.sma(df, period)
assert isinstance(result_df, pd.DataFrame)
assert result_df.empty
def test_ema_calculation(self, indicators, sample_candles):
"""Test Exponential Moving Average calculation (now returns DataFrame)."""
period = 10
df = indicators._prepare_dataframe_from_list(sample_candles)
df['timestamp'] = df.index
result_df = indicators.ema(df, period)
# Should have results starting from period 10
assert isinstance(result_df, pd.DataFrame)
assert len(result_df) == len(sample_candles) - period + 1
assert 'ema' in result_df.columns
# EMA should be between the range of input prices
min_price = min(float(c.close) for c in sample_candles[:period])
max_price = max(float(c.close) for c in sample_candles[:period])
assert min_price <= result_df.iloc[0]['ema'] <= max_price
def test_rsi_calculation(self, indicators, sample_candles):
"""Test Relative Strength Index calculation (now returns DataFrame)."""
period = 14
df = indicators._prepare_dataframe_from_list(sample_candles)
df['timestamp'] = df.index
result_df = indicators.rsi(df, period)
assert isinstance(result_df, pd.DataFrame)
assert not result_df.empty
assert 'rsi' in result_df.columns
assert 0 <= result_df.iloc[0]['rsi'] <= 100
def test_macd_calculation(self, indicators, sample_candles):
"""Test MACD calculation (now returns DataFrame)."""
fast_period = 12
slow_period = 26
signal_period = 9
df = indicators._prepare_dataframe_from_list(sample_candles)
df['timestamp'] = df.index
result_df = indicators.macd(df, fast_period, slow_period, signal_period)
# MACD results start after max(slow_period, signal_period) - 1 rows
min_required = max(slow_period, signal_period)
expected_count = max(0, len(sample_candles) - (min_required - 1))
assert isinstance(result_df, pd.DataFrame)
assert len(result_df) == expected_count
assert 'macd' in result_df.columns
assert 'signal' in result_df.columns
assert 'histogram' in result_df.columns
if not result_df.empty:
# Histogram should equal MACD - Signal
first_row = result_df.iloc[0]
expected_histogram = first_row['macd'] - first_row['signal']
assert abs(first_row['histogram'] - expected_histogram) < 0.001
def test_bollinger_bands_calculation(self, indicators, sample_candles):
"""Test Bollinger Bands calculation (now returns DataFrame)."""
period = 20
std_dev = 2.0
df = indicators._prepare_dataframe_from_list(sample_candles)
df['timestamp'] = df.index
result_df = indicators.bollinger_bands(df, period, std_dev)
# Should have results starting from period 20
assert isinstance(result_df, pd.DataFrame)
assert len(result_df) == len(sample_candles) - period + 1
assert 'upper_band' in result_df.columns
assert 'middle_band' in result_df.columns
assert 'lower_band' in result_df.columns
# Upper band should be greater than middle band, which should be greater than lower band
first_row = result_df.iloc[0]
assert first_row['upper_band'] > first_row['middle_band']
assert first_row['middle_band'] > first_row['lower_band']
def test_sparse_data_handling(self, indicators, sparse_candles):
"""Test indicators with sparse data (time gaps)."""
period = 5
df = indicators._prepare_dataframe_from_list(sparse_candles)
df['timestamp'] = df.index
sma_df = indicators.sma(df, period)
# Should handle sparse data without issues
assert not sma_df.empty
# Check that timestamps are preserved correctly
for ts in sma_df.index:
assert ts is not None
assert isinstance(ts, datetime)
def test_calculate_multiple_indicators(self, indicators, sample_candles):
"""Test calculating multiple indicators at once."""
config = {
'sma_10': {'type': 'sma', 'period': 10},
'ema_12': {'type': 'ema', 'period': 12},
'rsi_14': {'type': 'rsi', 'period': 14},
'macd': {'type': 'macd'},
'bb_20': {'type': 'bollinger_bands', 'period': 20}
}
df = indicators._prepare_dataframe_from_list(sample_candles)
df['timestamp'] = df.index
results = indicators.calculate_multiple_indicators(df, config)
assert len(results) == len(config)
assert 'sma_10' in results
assert 'ema_12' in results
assert 'rsi_14' in results
assert 'macd' in results
assert 'bb_20' in results
# Check that each indicator has appropriate results
assert len(results['sma_10']) > 0
assert len(results['ema_12']) > 0
def test_invalid_indicator_config(self, indicators, sample_candles):
"""Test handling of invalid indicator configuration."""
config = {
'invalid_indicator': {'type': 'unknown_type', 'period': 10}
}
df = indicators._prepare_dataframe_from_list(sample_candles)
results = indicators.calculate_multiple_indicators(df, config)
assert 'invalid_indicator' in results
assert len(results['invalid_indicator']) == 0 # Should return empty list
def test_different_price_columns(self, indicators, sample_candles):
"""Test indicators with different price columns (now returns DataFrame)."""
df = indicators._prepare_dataframe_from_list(sample_candles)
# Test SMA with 'high' price column
sma_high = indicators.sma(df, 5, price_column='high')
sma_close = indicators.sma(df, 5, price_column='close')
assert len(sma_high) == len(sma_close)
# High prices should generally give higher SMA values
assert sma_high.iloc[0]['sma'] >= sma_close.iloc[0]['sma']
class TestIndicatorHelperFunctions:
"""Test helper functions for indicators."""
def test_create_default_indicators_config(self):
"""Test default indicators configuration creation."""
config = create_default_indicators_config()
assert isinstance(config, dict)
assert 'sma_20' in config
assert 'ema_12' in config
assert 'rsi_14' in config
assert 'macd_default' in config
assert 'bollinger_bands_20' in config
# Check structure of configurations
assert config['sma_20']['type'] == 'sma'
assert config['sma_20']['period'] == 20
assert config['macd_default']['type'] == 'macd'
def test_validate_indicator_config_valid(self):
"""Test validation of valid indicator configurations."""
valid_configs = [
{'type': 'sma', 'period': 20},
{'type': 'ema', 'period': 12},
{'type': 'rsi', 'period': 14},
{'type': 'macd'},
{'type': 'bollinger_bands', 'period': 20, 'std_dev': 2.0}
]
for config in valid_configs:
assert validate_indicator_config(config) == True
def test_validate_indicator_config_invalid(self):
"""Test validation of invalid indicator configurations."""
invalid_configs = [
{}, # Missing type
{'type': 'unknown'}, # Invalid type
{'type': 'sma', 'period': -5}, # Invalid period
{'type': 'sma', 'period': 'not_a_number'}, # Invalid period type
{'type': 'bollinger_bands', 'std_dev': -1.0}, # Invalid std_dev
]
for config in invalid_configs:
assert validate_indicator_config(config) == False
class TestIndicatorResultDataClass:
"""Test IndicatorResult dataclass."""
def test_indicator_result_creation(self):
"""Test IndicatorResult creation and attributes."""
timestamp = datetime(2024, 1, 1, 12, 0, 0, tzinfo=timezone.utc)
values = {'sma': 100.5, 'ema': 101.2}
metadata = {'period': 20}
result = IndicatorResult(
timestamp=timestamp,
symbol='BTC-USDT',
timeframe='1m',
values=values,
metadata=metadata
)
assert result.timestamp == timestamp
assert result.symbol == 'BTC-USDT'
assert result.timeframe == '1m'
assert result.values == values
assert result.metadata == metadata
def test_indicator_result_without_metadata(self):
"""Test IndicatorResult creation without metadata."""
timestamp = datetime(2024, 1, 1, 12, 0, 0, tzinfo=timezone.utc)
values = {'rsi': 65.5}
result = IndicatorResult(
timestamp=timestamp,
symbol='ETH-USDT',
timeframe='5m',
values=values
)
assert result.metadata is None
if __name__ == '__main__':
pytest.main([__file__])