2025-06-03 12:49:46 +08:00
|
|
|
"""
|
|
|
|
|
Modular Chart System for Crypto Trading Bot Dashboard
|
|
|
|
|
|
|
|
|
|
This package provides a flexible, strategy-driven chart system that supports:
|
|
|
|
|
- Technical indicator overlays (SMA, EMA, Bollinger Bands)
|
|
|
|
|
- Subplot management (RSI, MACD)
|
|
|
|
|
- Strategy-specific configurations
|
|
|
|
|
- Future bot signal integration
|
|
|
|
|
|
|
|
|
|
Main Components:
|
|
|
|
|
- ChartBuilder: Main orchestrator for chart creation
|
|
|
|
|
- Layer System: Modular rendering components
|
|
|
|
|
- Configuration System: Strategy-driven chart configs
|
|
|
|
|
"""
|
|
|
|
|
|
2025-06-03 13:56:15 +08:00
|
|
|
import plotly.graph_objects as go
|
2025-06-04 13:01:57 +08:00
|
|
|
from typing import List
|
2025-06-03 12:49:46 +08:00
|
|
|
from .builder import ChartBuilder
|
|
|
|
|
from .utils import (
|
|
|
|
|
validate_market_data,
|
|
|
|
|
prepare_chart_data,
|
|
|
|
|
get_indicator_colors
|
|
|
|
|
)
|
2025-06-03 13:56:15 +08:00
|
|
|
from .config import (
|
|
|
|
|
get_available_indicators,
|
|
|
|
|
calculate_indicators,
|
|
|
|
|
get_overlay_indicators,
|
|
|
|
|
get_subplot_indicators,
|
|
|
|
|
get_indicator_display_config
|
|
|
|
|
)
|
|
|
|
|
from .data_integration import (
|
|
|
|
|
MarketDataIntegrator,
|
|
|
|
|
DataIntegrationConfig,
|
|
|
|
|
get_market_data_integrator,
|
|
|
|
|
fetch_indicator_data,
|
|
|
|
|
check_symbol_data_quality
|
|
|
|
|
)
|
|
|
|
|
from .error_handling import (
|
|
|
|
|
ChartErrorHandler,
|
|
|
|
|
ChartError,
|
|
|
|
|
ErrorSeverity,
|
|
|
|
|
InsufficientDataError,
|
|
|
|
|
DataValidationError,
|
|
|
|
|
IndicatorCalculationError,
|
|
|
|
|
DataConnectionError,
|
|
|
|
|
check_data_sufficiency,
|
|
|
|
|
get_error_message,
|
|
|
|
|
create_error_annotation
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
# Layer imports with error handling
|
|
|
|
|
from .layers.base import (
|
|
|
|
|
LayerConfig,
|
|
|
|
|
BaseLayer,
|
|
|
|
|
CandlestickLayer,
|
|
|
|
|
VolumeLayer,
|
|
|
|
|
LayerManager
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
from .layers.indicators import (
|
|
|
|
|
IndicatorLayerConfig,
|
|
|
|
|
BaseIndicatorLayer,
|
|
|
|
|
SMALayer,
|
|
|
|
|
EMALayer,
|
|
|
|
|
BollingerBandsLayer
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
from .layers.subplots import (
|
|
|
|
|
SubplotLayerConfig,
|
|
|
|
|
BaseSubplotLayer,
|
|
|
|
|
RSILayer,
|
|
|
|
|
MACDLayer
|
|
|
|
|
)
|
2025-06-03 12:49:46 +08:00
|
|
|
|
|
|
|
|
# Version information
|
|
|
|
|
__version__ = "0.1.0"
|
|
|
|
|
__package_name__ = "charts"
|
|
|
|
|
|
|
|
|
|
# Public API exports
|
|
|
|
|
__all__ = [
|
2025-06-03 13:56:15 +08:00
|
|
|
# Core components
|
2025-06-03 12:49:46 +08:00
|
|
|
"ChartBuilder",
|
|
|
|
|
"validate_market_data",
|
|
|
|
|
"prepare_chart_data",
|
|
|
|
|
"get_indicator_colors",
|
2025-06-03 13:56:15 +08:00
|
|
|
|
|
|
|
|
# Chart creation functions
|
2025-06-03 12:49:46 +08:00
|
|
|
"create_candlestick_chart",
|
|
|
|
|
"create_strategy_chart",
|
2025-06-03 13:56:15 +08:00
|
|
|
"create_empty_chart",
|
|
|
|
|
"create_error_chart",
|
|
|
|
|
|
|
|
|
|
# Data integration
|
|
|
|
|
"MarketDataIntegrator",
|
|
|
|
|
"DataIntegrationConfig",
|
|
|
|
|
"get_market_data_integrator",
|
|
|
|
|
"fetch_indicator_data",
|
|
|
|
|
"check_symbol_data_quality",
|
|
|
|
|
|
|
|
|
|
# Error handling
|
|
|
|
|
"ChartErrorHandler",
|
|
|
|
|
"ChartError",
|
|
|
|
|
"ErrorSeverity",
|
|
|
|
|
"InsufficientDataError",
|
|
|
|
|
"DataValidationError",
|
|
|
|
|
"IndicatorCalculationError",
|
|
|
|
|
"DataConnectionError",
|
|
|
|
|
"check_data_sufficiency",
|
|
|
|
|
"get_error_message",
|
|
|
|
|
"create_error_annotation",
|
|
|
|
|
|
|
|
|
|
# Utility functions
|
|
|
|
|
"get_supported_symbols",
|
|
|
|
|
"get_supported_timeframes",
|
2025-06-03 12:49:46 +08:00
|
|
|
"get_market_statistics",
|
|
|
|
|
"check_data_availability",
|
|
|
|
|
"create_data_status_indicator",
|
2025-06-03 13:56:15 +08:00
|
|
|
|
|
|
|
|
# Base layers
|
|
|
|
|
"LayerConfig",
|
|
|
|
|
"BaseLayer",
|
|
|
|
|
"CandlestickLayer",
|
|
|
|
|
"VolumeLayer",
|
|
|
|
|
"LayerManager",
|
|
|
|
|
|
|
|
|
|
# Indicator layers
|
|
|
|
|
"IndicatorLayerConfig",
|
|
|
|
|
"BaseIndicatorLayer",
|
|
|
|
|
"SMALayer",
|
|
|
|
|
"EMALayer",
|
|
|
|
|
"BollingerBandsLayer",
|
|
|
|
|
|
|
|
|
|
# Subplot layers
|
|
|
|
|
"SubplotLayerConfig",
|
|
|
|
|
"BaseSubplotLayer",
|
|
|
|
|
"RSILayer",
|
|
|
|
|
"MACDLayer",
|
|
|
|
|
|
|
|
|
|
# Convenience functions
|
|
|
|
|
"create_basic_chart",
|
2025-06-04 13:01:57 +08:00
|
|
|
"create_indicator_chart",
|
|
|
|
|
"create_chart_with_indicators"
|
2025-06-03 12:49:46 +08:00
|
|
|
]
|
|
|
|
|
|
2025-06-03 13:56:15 +08:00
|
|
|
# Initialize logger
|
|
|
|
|
from utils.logger import get_logger
|
|
|
|
|
logger = get_logger("charts")
|
|
|
|
|
|
|
|
|
|
def create_candlestick_chart(symbol: str, timeframe: str, days_back: int = 7, **kwargs) -> go.Figure:
|
2025-06-03 12:49:46 +08:00
|
|
|
"""
|
2025-06-03 13:56:15 +08:00
|
|
|
Create a candlestick chart with enhanced data integration.
|
2025-06-03 12:49:46 +08:00
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
symbol: Trading pair (e.g., 'BTC-USDT')
|
|
|
|
|
timeframe: Timeframe (e.g., '1h', '1d')
|
|
|
|
|
days_back: Number of days to look back
|
2025-06-03 13:56:15 +08:00
|
|
|
**kwargs: Additional chart parameters
|
2025-06-03 12:49:46 +08:00
|
|
|
|
|
|
|
|
Returns:
|
2025-06-03 13:56:15 +08:00
|
|
|
Plotly figure with candlestick chart
|
2025-06-03 12:49:46 +08:00
|
|
|
"""
|
|
|
|
|
builder = ChartBuilder()
|
2025-06-03 13:56:15 +08:00
|
|
|
|
|
|
|
|
# Check data quality first
|
|
|
|
|
data_quality = builder.check_data_quality(symbol, timeframe)
|
|
|
|
|
if not data_quality['available']:
|
|
|
|
|
logger.warning(f"Data not available for {symbol} {timeframe}: {data_quality['message']}")
|
|
|
|
|
return builder._create_error_chart(f"No data available: {data_quality['message']}")
|
|
|
|
|
|
|
|
|
|
if not data_quality['sufficient_for_indicators']:
|
|
|
|
|
logger.warning(f"Insufficient data for indicators: {symbol} {timeframe}")
|
|
|
|
|
|
|
|
|
|
# Use enhanced data fetching
|
|
|
|
|
try:
|
|
|
|
|
candles = builder.fetch_market_data_enhanced(symbol, timeframe, days_back)
|
|
|
|
|
if not candles:
|
|
|
|
|
return builder._create_error_chart(f"No market data found for {symbol} {timeframe}")
|
|
|
|
|
|
|
|
|
|
# Prepare data for charting
|
|
|
|
|
df = prepare_chart_data(candles)
|
|
|
|
|
if df.empty:
|
|
|
|
|
return builder._create_error_chart("Failed to prepare chart data")
|
|
|
|
|
|
|
|
|
|
# Create chart with data quality info
|
|
|
|
|
fig = builder._create_candlestick_with_volume(df, symbol, timeframe)
|
|
|
|
|
|
|
|
|
|
# Add data quality annotation if data is stale
|
|
|
|
|
if not data_quality['is_recent']:
|
|
|
|
|
age_hours = data_quality['data_age_minutes'] / 60
|
|
|
|
|
fig.add_annotation(
|
|
|
|
|
text=f"⚠️ Data is {age_hours:.1f}h old",
|
|
|
|
|
xref="paper", yref="paper",
|
|
|
|
|
x=0.02, y=0.98,
|
|
|
|
|
showarrow=False,
|
|
|
|
|
bgcolor="rgba(255,193,7,0.8)",
|
|
|
|
|
bordercolor="orange",
|
|
|
|
|
borderwidth=1
|
|
|
|
|
)
|
|
|
|
|
|
|
|
|
|
logger.debug(f"Created enhanced candlestick chart for {symbol} {timeframe} with {len(candles)} candles")
|
|
|
|
|
return fig
|
|
|
|
|
|
|
|
|
|
except Exception as e:
|
|
|
|
|
logger.error(f"Error creating enhanced candlestick chart: {e}")
|
|
|
|
|
return builder._create_error_chart(f"Chart creation failed: {str(e)}")
|
2025-06-03 12:49:46 +08:00
|
|
|
|
|
|
|
|
def create_strategy_chart(symbol: str, timeframe: str, strategy_name: str, **kwargs):
|
|
|
|
|
"""
|
|
|
|
|
Convenience function to create a strategy-specific chart.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
symbol: Trading pair
|
|
|
|
|
timeframe: Timeframe
|
|
|
|
|
strategy_name: Name of the strategy configuration
|
|
|
|
|
**kwargs: Additional parameters
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
Plotly Figure object with strategy indicators
|
|
|
|
|
"""
|
|
|
|
|
builder = ChartBuilder()
|
|
|
|
|
return builder.create_strategy_chart(symbol, timeframe, strategy_name, **kwargs)
|
|
|
|
|
|
|
|
|
|
def get_supported_symbols():
|
|
|
|
|
"""Get list of symbols that have data in the database."""
|
|
|
|
|
builder = ChartBuilder()
|
|
|
|
|
candles = builder.fetch_market_data("BTC-USDT", "1m", days_back=1) # Test query
|
|
|
|
|
if candles:
|
|
|
|
|
from database.operations import get_database_operations
|
|
|
|
|
from utils.logger import get_logger
|
2025-06-04 17:03:35 +08:00
|
|
|
logger = get_logger("default_logger")
|
2025-06-03 12:49:46 +08:00
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
db = get_database_operations(logger)
|
|
|
|
|
with db.market_data.get_session() as session:
|
|
|
|
|
from sqlalchemy import text
|
|
|
|
|
result = session.execute(text("SELECT DISTINCT symbol FROM market_data ORDER BY symbol"))
|
|
|
|
|
return [row[0] for row in result]
|
|
|
|
|
except Exception:
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
return ['BTC-USDT', 'ETH-USDT'] # Fallback
|
|
|
|
|
|
|
|
|
|
def get_supported_timeframes():
|
|
|
|
|
"""Get list of timeframes that have data in the database."""
|
|
|
|
|
builder = ChartBuilder()
|
|
|
|
|
candles = builder.fetch_market_data("BTC-USDT", "1m", days_back=1) # Test query
|
|
|
|
|
if candles:
|
|
|
|
|
from database.operations import get_database_operations
|
|
|
|
|
from utils.logger import get_logger
|
2025-06-04 17:03:35 +08:00
|
|
|
logger = get_logger("default_logger")
|
2025-06-03 12:49:46 +08:00
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
db = get_database_operations(logger)
|
|
|
|
|
with db.market_data.get_session() as session:
|
|
|
|
|
from sqlalchemy import text
|
|
|
|
|
result = session.execute(text("SELECT DISTINCT timeframe FROM market_data ORDER BY timeframe"))
|
|
|
|
|
return [row[0] for row in result]
|
|
|
|
|
except Exception:
|
|
|
|
|
pass
|
|
|
|
|
|
|
|
|
|
return ['5s', '1m', '15m', '1h'] # Fallback
|
|
|
|
|
|
2025-06-05 12:54:41 +08:00
|
|
|
def get_market_statistics(symbol: str, timeframe: str = "1h", days_back: int = 1):
|
|
|
|
|
"""Calculate market statistics from recent data over a specified period."""
|
2025-06-03 12:49:46 +08:00
|
|
|
builder = ChartBuilder()
|
2025-06-05 12:54:41 +08:00
|
|
|
candles = builder.fetch_market_data(symbol, timeframe, days_back=days_back)
|
2025-06-03 12:49:46 +08:00
|
|
|
|
|
|
|
|
if not candles:
|
2025-06-05 12:54:41 +08:00
|
|
|
return {'Price': 'N/A', f'Change ({days_back}d)': 'N/A', f'Volume ({days_back}d)': 'N/A', f'High ({days_back}d)': 'N/A', f'Low ({days_back}d)': 'N/A'}
|
2025-06-03 12:49:46 +08:00
|
|
|
|
|
|
|
|
import pandas as pd
|
|
|
|
|
df = pd.DataFrame(candles)
|
|
|
|
|
latest = df.iloc[-1]
|
|
|
|
|
current_price = float(latest['close'])
|
|
|
|
|
|
2025-06-05 12:54:41 +08:00
|
|
|
# Calculate change over the period
|
2025-06-03 12:49:46 +08:00
|
|
|
if len(df) > 1:
|
2025-06-05 12:54:41 +08:00
|
|
|
price_period_ago = float(df.iloc[0]['open'])
|
|
|
|
|
change_percent = ((current_price - price_period_ago) / price_period_ago) * 100
|
2025-06-03 12:49:46 +08:00
|
|
|
else:
|
|
|
|
|
change_percent = 0
|
|
|
|
|
|
|
|
|
|
from .utils import format_price, format_volume
|
2025-06-05 12:54:41 +08:00
|
|
|
|
|
|
|
|
# Determine label for period (e.g., "24h", "7d", "1h")
|
|
|
|
|
if days_back == 1/24:
|
|
|
|
|
period_label = "1h"
|
|
|
|
|
elif days_back == 4/24:
|
|
|
|
|
period_label = "4h"
|
|
|
|
|
elif days_back == 6/24:
|
|
|
|
|
period_label = "6h"
|
|
|
|
|
elif days_back == 12/24:
|
|
|
|
|
period_label = "12h"
|
|
|
|
|
elif days_back < 1: # For other fractional days, show as hours
|
|
|
|
|
period_label = f"{int(days_back * 24)}h"
|
|
|
|
|
elif days_back == 1:
|
|
|
|
|
period_label = "24h" # Keep 24h for 1 day for clarity
|
|
|
|
|
else:
|
|
|
|
|
period_label = f"{days_back}d"
|
|
|
|
|
|
2025-06-03 12:49:46 +08:00
|
|
|
return {
|
|
|
|
|
'Price': format_price(current_price, decimals=2),
|
2025-06-05 12:54:41 +08:00
|
|
|
f'Change ({period_label})': f"{'+' if change_percent >= 0 else ''}{change_percent:.2f}%",
|
|
|
|
|
f'Volume ({period_label})': format_volume(df['volume'].sum()),
|
|
|
|
|
f'High ({period_label})': format_price(df['high'].max(), decimals=2),
|
|
|
|
|
f'Low ({period_label})': format_price(df['low'].min(), decimals=2)
|
2025-06-03 12:49:46 +08:00
|
|
|
}
|
|
|
|
|
|
|
|
|
|
def check_data_availability(symbol: str, timeframe: str):
|
|
|
|
|
"""Check data availability for a symbol and timeframe."""
|
|
|
|
|
from datetime import datetime, timezone, timedelta
|
|
|
|
|
from database.operations import get_database_operations
|
|
|
|
|
from utils.logger import get_logger
|
|
|
|
|
|
|
|
|
|
try:
|
|
|
|
|
logger = get_logger("charts_data_check")
|
|
|
|
|
db = get_database_operations(logger)
|
|
|
|
|
latest_candle = db.market_data.get_latest_candle(symbol, timeframe)
|
|
|
|
|
|
|
|
|
|
if latest_candle:
|
|
|
|
|
latest_time = latest_candle['timestamp']
|
|
|
|
|
time_diff = datetime.now(timezone.utc) - latest_time.replace(tzinfo=timezone.utc)
|
|
|
|
|
|
|
|
|
|
return {
|
|
|
|
|
'has_data': True,
|
|
|
|
|
'latest_timestamp': latest_time,
|
|
|
|
|
'time_since_last': time_diff,
|
|
|
|
|
'is_recent': time_diff < timedelta(hours=1),
|
|
|
|
|
'message': f"Latest data: {latest_time.strftime('%Y-%m-%d %H:%M:%S UTC')}"
|
|
|
|
|
}
|
|
|
|
|
else:
|
|
|
|
|
return {
|
|
|
|
|
'has_data': False,
|
|
|
|
|
'latest_timestamp': None,
|
|
|
|
|
'time_since_last': None,
|
|
|
|
|
'is_recent': False,
|
|
|
|
|
'message': f"No data available for {symbol} {timeframe}"
|
|
|
|
|
}
|
|
|
|
|
except Exception as e:
|
|
|
|
|
return {
|
|
|
|
|
'has_data': False,
|
|
|
|
|
'latest_timestamp': None,
|
|
|
|
|
'time_since_last': None,
|
|
|
|
|
'is_recent': False,
|
|
|
|
|
'message': f"Error checking data: {str(e)}"
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
def create_data_status_indicator(symbol: str, timeframe: str):
|
|
|
|
|
"""Create a data status indicator for the dashboard."""
|
|
|
|
|
status = check_data_availability(symbol, timeframe)
|
|
|
|
|
|
|
|
|
|
if status['has_data']:
|
|
|
|
|
if status['is_recent']:
|
|
|
|
|
icon, color, status_text = "🟢", "#27ae60", "Real-time Data"
|
|
|
|
|
else:
|
|
|
|
|
icon, color, status_text = "🟡", "#f39c12", "Delayed Data"
|
|
|
|
|
else:
|
|
|
|
|
icon, color, status_text = "🔴", "#e74c3c", "No Data"
|
|
|
|
|
|
|
|
|
|
return f'<span style="color: {color}; font-weight: bold;">{icon} {status_text}</span><br><small>{status["message"]}</small>'
|
|
|
|
|
|
|
|
|
|
def create_error_chart(error_message: str):
|
|
|
|
|
"""Create an error chart with error message."""
|
|
|
|
|
builder = ChartBuilder()
|
2025-06-03 13:56:15 +08:00
|
|
|
return builder._create_error_chart(error_message)
|
|
|
|
|
|
|
|
|
|
def create_basic_chart(symbol: str, data: list,
|
|
|
|
|
indicators: list = None,
|
|
|
|
|
error_handling: bool = True) -> 'go.Figure':
|
|
|
|
|
"""
|
|
|
|
|
Create a basic chart with error handling.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
symbol: Trading symbol
|
|
|
|
|
data: OHLCV data as list of dictionaries
|
|
|
|
|
indicators: List of indicator configurations
|
|
|
|
|
error_handling: Whether to use comprehensive error handling
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
Plotly figure with chart or error display
|
|
|
|
|
"""
|
|
|
|
|
try:
|
|
|
|
|
from plotly import graph_objects as go
|
|
|
|
|
|
|
|
|
|
# Initialize chart builder
|
|
|
|
|
builder = ChartBuilder()
|
|
|
|
|
|
|
|
|
|
if error_handling:
|
|
|
|
|
# Use error-aware chart creation
|
|
|
|
|
error_handler = ChartErrorHandler()
|
|
|
|
|
is_valid = error_handler.validate_data_sufficiency(data, indicators=indicators or [])
|
|
|
|
|
|
|
|
|
|
if not is_valid:
|
|
|
|
|
# Create error chart
|
|
|
|
|
fig = go.Figure()
|
|
|
|
|
error_msg = error_handler.get_user_friendly_message()
|
|
|
|
|
fig.add_annotation(create_error_annotation(error_msg, position='center'))
|
|
|
|
|
fig.update_layout(
|
|
|
|
|
title=f"Chart Error - {symbol}",
|
|
|
|
|
xaxis={'visible': False},
|
|
|
|
|
yaxis={'visible': False},
|
|
|
|
|
template='plotly_white',
|
|
|
|
|
height=400
|
|
|
|
|
)
|
|
|
|
|
return fig
|
|
|
|
|
|
|
|
|
|
# Create chart normally
|
|
|
|
|
return builder.create_candlestick_chart(data, symbol=symbol, indicators=indicators or [])
|
|
|
|
|
|
|
|
|
|
except Exception as e:
|
|
|
|
|
# Fallback error chart
|
|
|
|
|
from plotly import graph_objects as go
|
|
|
|
|
fig = go.Figure()
|
|
|
|
|
fig.add_annotation(create_error_annotation(
|
|
|
|
|
f"Chart creation failed: {str(e)}",
|
|
|
|
|
position='center'
|
|
|
|
|
))
|
|
|
|
|
fig.update_layout(
|
|
|
|
|
title=f"Chart Error - {symbol}",
|
|
|
|
|
template='plotly_white',
|
|
|
|
|
height=400
|
|
|
|
|
)
|
|
|
|
|
return fig
|
|
|
|
|
|
|
|
|
|
def create_indicator_chart(symbol: str, data: list,
|
|
|
|
|
indicator_type: str, **params) -> 'go.Figure':
|
|
|
|
|
"""
|
|
|
|
|
Create a chart focused on a specific indicator.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
symbol: Trading symbol
|
|
|
|
|
data: OHLCV data
|
|
|
|
|
indicator_type: Type of indicator ('sma', 'ema', 'bollinger_bands', 'rsi', 'macd')
|
|
|
|
|
**params: Indicator parameters
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
Plotly figure with indicator chart
|
|
|
|
|
"""
|
|
|
|
|
try:
|
|
|
|
|
# Map indicator types to configurations
|
|
|
|
|
indicator_map = {
|
|
|
|
|
'sma': {'type': 'sma', 'parameters': {'period': params.get('period', 20)}},
|
|
|
|
|
'ema': {'type': 'ema', 'parameters': {'period': params.get('period', 20)}},
|
|
|
|
|
'bollinger_bands': {
|
|
|
|
|
'type': 'bollinger_bands',
|
|
|
|
|
'parameters': {
|
|
|
|
|
'period': params.get('period', 20),
|
|
|
|
|
'std_dev': params.get('std_dev', 2)
|
|
|
|
|
}
|
|
|
|
|
},
|
|
|
|
|
'rsi': {'type': 'rsi', 'parameters': {'period': params.get('period', 14)}},
|
|
|
|
|
'macd': {
|
|
|
|
|
'type': 'macd',
|
|
|
|
|
'parameters': {
|
|
|
|
|
'fast_period': params.get('fast_period', 12),
|
|
|
|
|
'slow_period': params.get('slow_period', 26),
|
|
|
|
|
'signal_period': params.get('signal_period', 9)
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
}
|
|
|
|
|
|
|
|
|
|
if indicator_type not in indicator_map:
|
|
|
|
|
raise ValueError(f"Unknown indicator type: {indicator_type}")
|
|
|
|
|
|
|
|
|
|
indicator_config = indicator_map[indicator_type]
|
|
|
|
|
return create_basic_chart(symbol, data, indicators=[indicator_config])
|
|
|
|
|
|
|
|
|
|
except Exception as e:
|
2025-06-04 13:01:57 +08:00
|
|
|
return create_basic_chart(symbol, data, indicators=[]) # Fallback to basic chart
|
|
|
|
|
|
|
|
|
|
def create_chart_with_indicators(symbol: str, timeframe: str,
|
|
|
|
|
overlay_indicators: List[str] = None,
|
|
|
|
|
subplot_indicators: List[str] = None,
|
|
|
|
|
days_back: int = 7, **kwargs) -> go.Figure:
|
|
|
|
|
"""
|
|
|
|
|
Create a chart with dynamically selected indicators.
|
|
|
|
|
|
|
|
|
|
Args:
|
|
|
|
|
symbol: Trading pair (e.g., 'BTC-USDT')
|
|
|
|
|
timeframe: Timeframe (e.g., '1h', '1d')
|
|
|
|
|
overlay_indicators: List of overlay indicator names
|
|
|
|
|
subplot_indicators: List of subplot indicator names
|
|
|
|
|
days_back: Number of days to look back
|
|
|
|
|
**kwargs: Additional chart parameters
|
|
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
|
Plotly figure with selected indicators
|
|
|
|
|
"""
|
|
|
|
|
builder = ChartBuilder()
|
|
|
|
|
return builder.create_chart_with_indicators(
|
|
|
|
|
symbol, timeframe, overlay_indicators, subplot_indicators, days_back, **kwargs
|
2025-06-05 12:54:41 +08:00
|
|
|
)
|
|
|
|
|
|
|
|
|
|
def initialize_indicator_manager():
|
|
|
|
|
# Implementation of initialize_indicator_manager function
|
|
|
|
|
pass
|