721 lines
26 KiB
Python
721 lines
26 KiB
Python
|
|
"""
|
||
|
|
Data analysis components for comprehensive market data analysis.
|
||
|
|
"""
|
||
|
|
|
||
|
|
from dash import html, dcc
|
||
|
|
import dash_mantine_components as dmc
|
||
|
|
import plotly.graph_objects as go
|
||
|
|
import plotly.express as px
|
||
|
|
from plotly.subplots import make_subplots
|
||
|
|
import pandas as pd
|
||
|
|
import numpy as np
|
||
|
|
from datetime import datetime, timezone, timedelta
|
||
|
|
from typing import Dict, Any, List, Optional
|
||
|
|
|
||
|
|
from utils.logger import get_logger
|
||
|
|
from database.connection import DatabaseManager
|
||
|
|
from database.operations import DatabaseOperationError
|
||
|
|
|
||
|
|
logger = get_logger("data_analysis")
|
||
|
|
|
||
|
|
|
||
|
|
class VolumeAnalyzer:
|
||
|
|
"""Analyze trading volume patterns and trends."""
|
||
|
|
|
||
|
|
def __init__(self):
|
||
|
|
self.db_manager = DatabaseManager()
|
||
|
|
self.db_manager.initialize()
|
||
|
|
|
||
|
|
def get_volume_statistics(self, symbol: str, timeframe: str = "1h", days_back: int = 7) -> Dict[str, Any]:
|
||
|
|
"""Calculate comprehensive volume statistics."""
|
||
|
|
try:
|
||
|
|
# Fetch recent market data
|
||
|
|
end_time = datetime.now(timezone.utc)
|
||
|
|
start_time = end_time - timedelta(days=days_back)
|
||
|
|
|
||
|
|
with self.db_manager.get_session() as session:
|
||
|
|
from sqlalchemy import text
|
||
|
|
|
||
|
|
query = text("""
|
||
|
|
SELECT timestamp, open, high, low, close, volume, trades_count
|
||
|
|
FROM market_data
|
||
|
|
WHERE symbol = :symbol
|
||
|
|
AND timeframe = :timeframe
|
||
|
|
AND timestamp >= :start_time
|
||
|
|
AND timestamp <= :end_time
|
||
|
|
ORDER BY timestamp ASC
|
||
|
|
""")
|
||
|
|
|
||
|
|
result = session.execute(query, {
|
||
|
|
'symbol': symbol,
|
||
|
|
'timeframe': timeframe,
|
||
|
|
'start_time': start_time,
|
||
|
|
'end_time': end_time
|
||
|
|
})
|
||
|
|
|
||
|
|
candles = []
|
||
|
|
for row in result:
|
||
|
|
candles.append({
|
||
|
|
'timestamp': row.timestamp,
|
||
|
|
'open': float(row.open),
|
||
|
|
'high': float(row.high),
|
||
|
|
'low': float(row.low),
|
||
|
|
'close': float(row.close),
|
||
|
|
'volume': float(row.volume),
|
||
|
|
'trades_count': int(row.trades_count) if row.trades_count else 0
|
||
|
|
})
|
||
|
|
|
||
|
|
if not candles:
|
||
|
|
return {'error': 'No data available'}
|
||
|
|
|
||
|
|
df = pd.DataFrame(candles)
|
||
|
|
|
||
|
|
# Calculate volume statistics
|
||
|
|
total_volume = df['volume'].sum()
|
||
|
|
avg_volume = df['volume'].mean()
|
||
|
|
volume_std = df['volume'].std()
|
||
|
|
|
||
|
|
# Volume trend analysis
|
||
|
|
recent_volume = df['volume'].tail(10).mean() # Last 10 periods
|
||
|
|
older_volume = df['volume'].head(10).mean() # First 10 periods
|
||
|
|
volume_trend = "Increasing" if recent_volume > older_volume else "Decreasing"
|
||
|
|
|
||
|
|
# High volume periods (above 2 standard deviations)
|
||
|
|
high_volume_threshold = avg_volume + (2 * volume_std)
|
||
|
|
high_volume_periods = len(df[df['volume'] > high_volume_threshold])
|
||
|
|
|
||
|
|
# Volume-Price correlation
|
||
|
|
price_change = df['close'] - df['open']
|
||
|
|
volume_price_corr = df['volume'].corr(price_change.abs())
|
||
|
|
|
||
|
|
# Average trade size (volume per trade)
|
||
|
|
df['avg_trade_size'] = df['volume'] / df['trades_count'].replace(0, 1)
|
||
|
|
avg_trade_size = df['avg_trade_size'].mean()
|
||
|
|
|
||
|
|
return {
|
||
|
|
'total_volume': total_volume,
|
||
|
|
'avg_volume': avg_volume,
|
||
|
|
'volume_std': volume_std,
|
||
|
|
'volume_trend': volume_trend,
|
||
|
|
'high_volume_periods': high_volume_periods,
|
||
|
|
'volume_price_correlation': volume_price_corr,
|
||
|
|
'avg_trade_size': avg_trade_size,
|
||
|
|
'max_volume': df['volume'].max(),
|
||
|
|
'min_volume': df['volume'].min(),
|
||
|
|
'volume_percentiles': {
|
||
|
|
'25th': df['volume'].quantile(0.25),
|
||
|
|
'50th': df['volume'].quantile(0.50),
|
||
|
|
'75th': df['volume'].quantile(0.75),
|
||
|
|
'95th': df['volume'].quantile(0.95)
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
except Exception as e:
|
||
|
|
logger.error(f"Volume analysis error: {e}")
|
||
|
|
return {'error': str(e)}
|
||
|
|
|
||
|
|
|
||
|
|
class PriceMovementAnalyzer:
|
||
|
|
"""Analyze price movement patterns and statistics."""
|
||
|
|
|
||
|
|
def __init__(self):
|
||
|
|
self.db_manager = DatabaseManager()
|
||
|
|
self.db_manager.initialize()
|
||
|
|
|
||
|
|
def get_price_movement_statistics(self, symbol: str, timeframe: str = "1h", days_back: int = 7) -> Dict[str, Any]:
|
||
|
|
"""Calculate comprehensive price movement statistics."""
|
||
|
|
try:
|
||
|
|
# Fetch recent market data
|
||
|
|
end_time = datetime.now(timezone.utc)
|
||
|
|
start_time = end_time - timedelta(days=days_back)
|
||
|
|
|
||
|
|
with self.db_manager.get_session() as session:
|
||
|
|
from sqlalchemy import text
|
||
|
|
|
||
|
|
query = text("""
|
||
|
|
SELECT timestamp, open, high, low, close, volume
|
||
|
|
FROM market_data
|
||
|
|
WHERE symbol = :symbol
|
||
|
|
AND timeframe = :timeframe
|
||
|
|
AND timestamp >= :start_time
|
||
|
|
AND timestamp <= :end_time
|
||
|
|
ORDER BY timestamp ASC
|
||
|
|
""")
|
||
|
|
|
||
|
|
result = session.execute(query, {
|
||
|
|
'symbol': symbol,
|
||
|
|
'timeframe': timeframe,
|
||
|
|
'start_time': start_time,
|
||
|
|
'end_time': end_time
|
||
|
|
})
|
||
|
|
|
||
|
|
candles = []
|
||
|
|
for row in result:
|
||
|
|
candles.append({
|
||
|
|
'timestamp': row.timestamp,
|
||
|
|
'open': float(row.open),
|
||
|
|
'high': float(row.high),
|
||
|
|
'low': float(row.low),
|
||
|
|
'close': float(row.close),
|
||
|
|
'volume': float(row.volume)
|
||
|
|
})
|
||
|
|
|
||
|
|
if not candles:
|
||
|
|
return {'error': 'No data available'}
|
||
|
|
|
||
|
|
df = pd.DataFrame(candles)
|
||
|
|
|
||
|
|
# Basic price statistics
|
||
|
|
current_price = df['close'].iloc[-1]
|
||
|
|
period_start_price = df['open'].iloc[0]
|
||
|
|
period_return = ((current_price - period_start_price) / period_start_price) * 100
|
||
|
|
|
||
|
|
# Daily returns (percentage changes)
|
||
|
|
df['returns'] = df['close'].pct_change() * 100
|
||
|
|
df['returns'] = df['returns'].fillna(0)
|
||
|
|
|
||
|
|
# Volatility metrics
|
||
|
|
volatility = df['returns'].std()
|
||
|
|
avg_return = df['returns'].mean()
|
||
|
|
|
||
|
|
# Price range analysis
|
||
|
|
df['range'] = df['high'] - df['low']
|
||
|
|
df['range_pct'] = (df['range'] / df['open']) * 100
|
||
|
|
avg_range_pct = df['range_pct'].mean()
|
||
|
|
|
||
|
|
# Directional analysis
|
||
|
|
bullish_periods = len(df[df['close'] > df['open']])
|
||
|
|
bearish_periods = len(df[df['close'] < df['open']])
|
||
|
|
neutral_periods = len(df[df['close'] == df['open']])
|
||
|
|
|
||
|
|
total_periods = len(df)
|
||
|
|
bullish_ratio = (bullish_periods / total_periods) * 100 if total_periods > 0 else 0
|
||
|
|
|
||
|
|
# Price extremes
|
||
|
|
period_high = df['high'].max()
|
||
|
|
period_low = df['low'].min()
|
||
|
|
|
||
|
|
# Momentum indicators
|
||
|
|
# Simple momentum (current vs N periods ago)
|
||
|
|
momentum_periods = min(10, len(df) - 1)
|
||
|
|
if momentum_periods > 0:
|
||
|
|
momentum = ((current_price - df['close'].iloc[-momentum_periods-1]) / df['close'].iloc[-momentum_periods-1]) * 100
|
||
|
|
else:
|
||
|
|
momentum = 0
|
||
|
|
|
||
|
|
# Trend strength (linear regression slope)
|
||
|
|
if len(df) > 2:
|
||
|
|
x = np.arange(len(df))
|
||
|
|
slope, _ = np.polyfit(x, df['close'], 1)
|
||
|
|
trend_strength = slope / df['close'].mean() * 100 # Normalize by average price
|
||
|
|
else:
|
||
|
|
trend_strength = 0
|
||
|
|
|
||
|
|
return {
|
||
|
|
'current_price': current_price,
|
||
|
|
'period_return': period_return,
|
||
|
|
'volatility': volatility,
|
||
|
|
'avg_return': avg_return,
|
||
|
|
'avg_range_pct': avg_range_pct,
|
||
|
|
'bullish_periods': bullish_periods,
|
||
|
|
'bearish_periods': bearish_periods,
|
||
|
|
'neutral_periods': neutral_periods,
|
||
|
|
'bullish_ratio': bullish_ratio,
|
||
|
|
'period_high': period_high,
|
||
|
|
'period_low': period_low,
|
||
|
|
'momentum': momentum,
|
||
|
|
'trend_strength': trend_strength,
|
||
|
|
'return_percentiles': {
|
||
|
|
'5th': df['returns'].quantile(0.05),
|
||
|
|
'25th': df['returns'].quantile(0.25),
|
||
|
|
'75th': df['returns'].quantile(0.75),
|
||
|
|
'95th': df['returns'].quantile(0.95)
|
||
|
|
},
|
||
|
|
'max_gain': df['returns'].max(),
|
||
|
|
'max_loss': df['returns'].min(),
|
||
|
|
'positive_returns': len(df[df['returns'] > 0]),
|
||
|
|
'negative_returns': len(df[df['returns'] < 0])
|
||
|
|
}
|
||
|
|
|
||
|
|
except Exception as e:
|
||
|
|
logger.error(f"Price movement analysis error: {e}")
|
||
|
|
return {'error': str(e)}
|
||
|
|
|
||
|
|
|
||
|
|
def create_volume_analysis_chart(symbol: str, timeframe: str = "1h", days_back: int = 7) -> go.Figure:
|
||
|
|
"""Create a comprehensive volume analysis chart."""
|
||
|
|
try:
|
||
|
|
analyzer = VolumeAnalyzer()
|
||
|
|
|
||
|
|
# Fetch market data for chart
|
||
|
|
db_manager = DatabaseManager()
|
||
|
|
db_manager.initialize()
|
||
|
|
|
||
|
|
end_time = datetime.now(timezone.utc)
|
||
|
|
start_time = end_time - timedelta(days=days_back)
|
||
|
|
|
||
|
|
with db_manager.get_session() as session:
|
||
|
|
from sqlalchemy import text
|
||
|
|
|
||
|
|
query = text("""
|
||
|
|
SELECT timestamp, open, high, low, close, volume, trades_count
|
||
|
|
FROM market_data
|
||
|
|
WHERE symbol = :symbol
|
||
|
|
AND timeframe = :timeframe
|
||
|
|
AND timestamp >= :start_time
|
||
|
|
AND timestamp <= :end_time
|
||
|
|
ORDER BY timestamp ASC
|
||
|
|
""")
|
||
|
|
|
||
|
|
result = session.execute(query, {
|
||
|
|
'symbol': symbol,
|
||
|
|
'timeframe': timeframe,
|
||
|
|
'start_time': start_time,
|
||
|
|
'end_time': end_time
|
||
|
|
})
|
||
|
|
|
||
|
|
candles = []
|
||
|
|
for row in result:
|
||
|
|
candles.append({
|
||
|
|
'timestamp': row.timestamp,
|
||
|
|
'open': float(row.open),
|
||
|
|
'high': float(row.high),
|
||
|
|
'low': float(row.low),
|
||
|
|
'close': float(row.close),
|
||
|
|
'volume': float(row.volume),
|
||
|
|
'trades_count': int(row.trades_count) if row.trades_count else 0
|
||
|
|
})
|
||
|
|
|
||
|
|
if not candles:
|
||
|
|
fig = go.Figure()
|
||
|
|
fig.add_annotation(text="No data available", xref="paper", yref="paper", x=0.5, y=0.5)
|
||
|
|
return fig
|
||
|
|
|
||
|
|
df = pd.DataFrame(candles)
|
||
|
|
|
||
|
|
# Calculate volume moving average
|
||
|
|
df['volume_ma'] = df['volume'].rolling(window=20, min_periods=1).mean()
|
||
|
|
|
||
|
|
# Create subplots
|
||
|
|
fig = make_subplots(
|
||
|
|
rows=3, cols=1,
|
||
|
|
subplot_titles=('Price Action', 'Volume Analysis', 'Volume vs Moving Average'),
|
||
|
|
vertical_spacing=0.08,
|
||
|
|
row_heights=[0.4, 0.3, 0.3]
|
||
|
|
)
|
||
|
|
|
||
|
|
# Price candlestick
|
||
|
|
fig.add_trace(
|
||
|
|
go.Candlestick(
|
||
|
|
x=df['timestamp'],
|
||
|
|
open=df['open'],
|
||
|
|
high=df['high'],
|
||
|
|
low=df['low'],
|
||
|
|
close=df['close'],
|
||
|
|
name='Price',
|
||
|
|
increasing_line_color='#26a69a',
|
||
|
|
decreasing_line_color='#ef5350'
|
||
|
|
),
|
||
|
|
row=1, col=1
|
||
|
|
)
|
||
|
|
|
||
|
|
# Volume bars with color coding
|
||
|
|
colors = ['#26a69a' if close >= open else '#ef5350' for close, open in zip(df['close'], df['open'])]
|
||
|
|
|
||
|
|
fig.add_trace(
|
||
|
|
go.Bar(
|
||
|
|
x=df['timestamp'],
|
||
|
|
y=df['volume'],
|
||
|
|
name='Volume',
|
||
|
|
marker_color=colors,
|
||
|
|
opacity=0.7
|
||
|
|
),
|
||
|
|
row=2, col=1
|
||
|
|
)
|
||
|
|
|
||
|
|
# Volume vs moving average
|
||
|
|
fig.add_trace(
|
||
|
|
go.Scatter(
|
||
|
|
x=df['timestamp'],
|
||
|
|
y=df['volume'],
|
||
|
|
mode='lines',
|
||
|
|
name='Volume',
|
||
|
|
line=dict(color='#2196f3', width=1)
|
||
|
|
),
|
||
|
|
row=3, col=1
|
||
|
|
)
|
||
|
|
|
||
|
|
fig.add_trace(
|
||
|
|
go.Scatter(
|
||
|
|
x=df['timestamp'],
|
||
|
|
y=df['volume_ma'],
|
||
|
|
mode='lines',
|
||
|
|
name='Volume MA(20)',
|
||
|
|
line=dict(color='#ff9800', width=2)
|
||
|
|
),
|
||
|
|
row=3, col=1
|
||
|
|
)
|
||
|
|
|
||
|
|
# Update layout
|
||
|
|
fig.update_layout(
|
||
|
|
title=f'{symbol} Volume Analysis ({timeframe})',
|
||
|
|
xaxis_rangeslider_visible=False,
|
||
|
|
height=800,
|
||
|
|
showlegend=True,
|
||
|
|
template='plotly_white'
|
||
|
|
)
|
||
|
|
|
||
|
|
# Update y-axes
|
||
|
|
fig.update_yaxes(title_text="Price", row=1, col=1)
|
||
|
|
fig.update_yaxes(title_text="Volume", row=2, col=1)
|
||
|
|
fig.update_yaxes(title_text="Volume", row=3, col=1)
|
||
|
|
|
||
|
|
return fig
|
||
|
|
|
||
|
|
except Exception as e:
|
||
|
|
logger.error(f"Volume chart creation error: {e}")
|
||
|
|
fig = go.Figure()
|
||
|
|
fig.add_annotation(text=f"Error: {str(e)}", xref="paper", yref="paper", x=0.5, y=0.5)
|
||
|
|
return fig
|
||
|
|
|
||
|
|
|
||
|
|
def create_price_movement_chart(symbol: str, timeframe: str = "1h", days_back: int = 7) -> go.Figure:
|
||
|
|
"""Create a comprehensive price movement analysis chart."""
|
||
|
|
try:
|
||
|
|
# Fetch market data for chart
|
||
|
|
db_manager = DatabaseManager()
|
||
|
|
db_manager.initialize()
|
||
|
|
|
||
|
|
end_time = datetime.now(timezone.utc)
|
||
|
|
start_time = end_time - timedelta(days=days_back)
|
||
|
|
|
||
|
|
with db_manager.get_session() as session:
|
||
|
|
from sqlalchemy import text
|
||
|
|
|
||
|
|
query = text("""
|
||
|
|
SELECT timestamp, open, high, low, close, volume
|
||
|
|
FROM market_data
|
||
|
|
WHERE symbol = :symbol
|
||
|
|
AND timeframe = :timeframe
|
||
|
|
AND timestamp >= :start_time
|
||
|
|
AND timestamp <= :end_time
|
||
|
|
ORDER BY timestamp ASC
|
||
|
|
""")
|
||
|
|
|
||
|
|
result = session.execute(query, {
|
||
|
|
'symbol': symbol,
|
||
|
|
'timeframe': timeframe,
|
||
|
|
'start_time': start_time,
|
||
|
|
'end_time': end_time
|
||
|
|
})
|
||
|
|
|
||
|
|
candles = []
|
||
|
|
for row in result:
|
||
|
|
candles.append({
|
||
|
|
'timestamp': row.timestamp,
|
||
|
|
'open': float(row.open),
|
||
|
|
'high': float(row.high),
|
||
|
|
'low': float(row.low),
|
||
|
|
'close': float(row.close),
|
||
|
|
'volume': float(row.volume)
|
||
|
|
})
|
||
|
|
|
||
|
|
if not candles:
|
||
|
|
fig = go.Figure()
|
||
|
|
fig.add_annotation(text="No data available", xref="paper", yref="paper", x=0.5, y=0.5)
|
||
|
|
return fig
|
||
|
|
|
||
|
|
df = pd.DataFrame(candles)
|
||
|
|
|
||
|
|
# Calculate returns and statistics
|
||
|
|
df['returns'] = df['close'].pct_change() * 100
|
||
|
|
df['returns'] = df['returns'].fillna(0)
|
||
|
|
df['range_pct'] = ((df['high'] - df['low']) / df['open']) * 100
|
||
|
|
df['cumulative_return'] = (1 + df['returns'] / 100).cumprod()
|
||
|
|
|
||
|
|
# Create subplots
|
||
|
|
fig = make_subplots(
|
||
|
|
rows=3, cols=1,
|
||
|
|
subplot_titles=('Cumulative Returns', 'Period Returns (%)', 'Price Range (%)'),
|
||
|
|
vertical_spacing=0.08,
|
||
|
|
row_heights=[0.4, 0.3, 0.3]
|
||
|
|
)
|
||
|
|
|
||
|
|
# Cumulative returns
|
||
|
|
fig.add_trace(
|
||
|
|
go.Scatter(
|
||
|
|
x=df['timestamp'],
|
||
|
|
y=df['cumulative_return'],
|
||
|
|
mode='lines',
|
||
|
|
name='Cumulative Return',
|
||
|
|
line=dict(color='#2196f3', width=2)
|
||
|
|
),
|
||
|
|
row=1, col=1
|
||
|
|
)
|
||
|
|
|
||
|
|
# Period returns with color coding
|
||
|
|
colors = ['#26a69a' if ret >= 0 else '#ef5350' for ret in df['returns']]
|
||
|
|
|
||
|
|
fig.add_trace(
|
||
|
|
go.Bar(
|
||
|
|
x=df['timestamp'],
|
||
|
|
y=df['returns'],
|
||
|
|
name='Returns (%)',
|
||
|
|
marker_color=colors,
|
||
|
|
opacity=0.7
|
||
|
|
),
|
||
|
|
row=2, col=1
|
||
|
|
)
|
||
|
|
|
||
|
|
# Price range percentage
|
||
|
|
fig.add_trace(
|
||
|
|
go.Scatter(
|
||
|
|
x=df['timestamp'],
|
||
|
|
y=df['range_pct'],
|
||
|
|
mode='lines+markers',
|
||
|
|
name='Range %',
|
||
|
|
line=dict(color='#ff9800', width=1),
|
||
|
|
marker=dict(size=4)
|
||
|
|
),
|
||
|
|
row=3, col=1
|
||
|
|
)
|
||
|
|
|
||
|
|
# Add zero line for returns
|
||
|
|
fig.add_hline(y=0, line_dash="dash", line_color="gray", row=2, col=1)
|
||
|
|
|
||
|
|
# Update layout
|
||
|
|
fig.update_layout(
|
||
|
|
title=f'{symbol} Price Movement Analysis ({timeframe})',
|
||
|
|
height=800,
|
||
|
|
showlegend=True,
|
||
|
|
template='plotly_white'
|
||
|
|
)
|
||
|
|
|
||
|
|
# Update y-axes
|
||
|
|
fig.update_yaxes(title_text="Cumulative Return", row=1, col=1)
|
||
|
|
fig.update_yaxes(title_text="Returns (%)", row=2, col=1)
|
||
|
|
fig.update_yaxes(title_text="Range (%)", row=3, col=1)
|
||
|
|
|
||
|
|
return fig
|
||
|
|
|
||
|
|
except Exception as e:
|
||
|
|
logger.error(f"Price movement chart creation error: {e}")
|
||
|
|
fig = go.Figure()
|
||
|
|
fig.add_annotation(text=f"Error: {str(e)}", xref="paper", yref="paper", x=0.5, y=0.5)
|
||
|
|
return fig
|
||
|
|
|
||
|
|
|
||
|
|
def create_data_analysis_panel():
|
||
|
|
"""Create the data analysis panel with volume and price movement tools."""
|
||
|
|
return html.Div([
|
||
|
|
html.H3("📊 Data Analysis Tools", style={'margin-bottom': '20px'}),
|
||
|
|
|
||
|
|
# Analysis type selection - using regular dropdown instead of SegmentedControl
|
||
|
|
html.Div([
|
||
|
|
html.Label("Analysis Type:", style={'font-weight': 'bold', 'margin-right': '10px'}),
|
||
|
|
dcc.Dropdown(
|
||
|
|
id="analysis-type-selector",
|
||
|
|
options=[
|
||
|
|
{"label": "Volume Analysis", "value": "volume"},
|
||
|
|
{"label": "Price Movement", "value": "price"},
|
||
|
|
{"label": "Combined Stats", "value": "combined"}
|
||
|
|
],
|
||
|
|
value="volume",
|
||
|
|
clearable=False,
|
||
|
|
style={'width': '200px', 'display': 'inline-block'}
|
||
|
|
)
|
||
|
|
], style={'margin-bottom': '20px'}),
|
||
|
|
|
||
|
|
# Time period selector - using regular dropdown
|
||
|
|
html.Div([
|
||
|
|
html.Label("Analysis Period:", style={'font-weight': 'bold', 'margin-right': '10px'}),
|
||
|
|
dcc.Dropdown(
|
||
|
|
id="analysis-period-selector",
|
||
|
|
options=[
|
||
|
|
{"label": "1 Day", "value": "1"},
|
||
|
|
{"label": "3 Days", "value": "3"},
|
||
|
|
{"label": "7 Days", "value": "7"},
|
||
|
|
{"label": "14 Days", "value": "14"},
|
||
|
|
{"label": "30 Days", "value": "30"}
|
||
|
|
],
|
||
|
|
value="7",
|
||
|
|
clearable=False,
|
||
|
|
style={'width': '150px', 'display': 'inline-block'}
|
||
|
|
)
|
||
|
|
], style={'margin-bottom': '20px'}),
|
||
|
|
|
||
|
|
# Charts container
|
||
|
|
html.Div(id="analysis-chart-container", children=[
|
||
|
|
html.P("Chart container loaded - waiting for callback...")
|
||
|
|
]),
|
||
|
|
|
||
|
|
# Statistics container
|
||
|
|
html.Div(id="analysis-stats-container", children=[
|
||
|
|
html.P("Stats container loaded - waiting for callback...")
|
||
|
|
])
|
||
|
|
|
||
|
|
], style={'border': '1px solid #ccc', 'padding': '20px', 'margin-top': '20px'})
|
||
|
|
|
||
|
|
|
||
|
|
def format_number(value: float, decimals: int = 2) -> str:
|
||
|
|
"""Format number with appropriate decimals and units."""
|
||
|
|
if pd.isna(value):
|
||
|
|
return "N/A"
|
||
|
|
|
||
|
|
if abs(value) >= 1e9:
|
||
|
|
return f"{value/1e9:.{decimals}f}B"
|
||
|
|
elif abs(value) >= 1e6:
|
||
|
|
return f"{value/1e6:.{decimals}f}M"
|
||
|
|
elif abs(value) >= 1e3:
|
||
|
|
return f"{value/1e3:.{decimals}f}K"
|
||
|
|
else:
|
||
|
|
return f"{value:.{decimals}f}"
|
||
|
|
|
||
|
|
|
||
|
|
def create_volume_stats_display(stats: Dict[str, Any]) -> html.Div:
|
||
|
|
"""Create volume statistics display."""
|
||
|
|
if 'error' in stats:
|
||
|
|
return dmc.Alert(
|
||
|
|
"Error loading volume statistics",
|
||
|
|
title="Volume Analysis Error",
|
||
|
|
color="red"
|
||
|
|
)
|
||
|
|
|
||
|
|
return dmc.SimpleGrid([
|
||
|
|
dmc.Paper([
|
||
|
|
dmc.Group([
|
||
|
|
dmc.ThemeIcon("📊", size="lg", color="blue"),
|
||
|
|
dmc.Stack([
|
||
|
|
dmc.Text("Total Volume", size="sm", c="dimmed"),
|
||
|
|
dmc.Text(format_number(stats['total_volume']), fw=700, size="lg")
|
||
|
|
], gap="xs")
|
||
|
|
])
|
||
|
|
], p="md", shadow="sm"),
|
||
|
|
|
||
|
|
dmc.Paper([
|
||
|
|
dmc.Group([
|
||
|
|
dmc.ThemeIcon("📈", size="lg", color="green"),
|
||
|
|
dmc.Stack([
|
||
|
|
dmc.Text("Average Volume", size="sm", c="dimmed"),
|
||
|
|
dmc.Text(format_number(stats['avg_volume']), fw=700, size="lg")
|
||
|
|
], gap="xs")
|
||
|
|
])
|
||
|
|
], p="md", shadow="sm"),
|
||
|
|
|
||
|
|
dmc.Paper([
|
||
|
|
dmc.Group([
|
||
|
|
dmc.ThemeIcon("🎯", size="lg", color="orange"),
|
||
|
|
dmc.Stack([
|
||
|
|
dmc.Text("Volume Trend", size="sm", c="dimmed"),
|
||
|
|
dmc.Text(stats['volume_trend'], fw=700, size="lg",
|
||
|
|
c="green" if stats['volume_trend'] == "Increasing" else "red")
|
||
|
|
], gap="xs")
|
||
|
|
])
|
||
|
|
], p="md", shadow="sm"),
|
||
|
|
|
||
|
|
dmc.Paper([
|
||
|
|
dmc.Group([
|
||
|
|
dmc.ThemeIcon("⚡", size="lg", color="red"),
|
||
|
|
dmc.Stack([
|
||
|
|
dmc.Text("High Volume Periods", size="sm", c="dimmed"),
|
||
|
|
dmc.Text(str(stats['high_volume_periods']), fw=700, size="lg")
|
||
|
|
], gap="xs")
|
||
|
|
])
|
||
|
|
], p="md", shadow="sm"),
|
||
|
|
|
||
|
|
dmc.Paper([
|
||
|
|
dmc.Group([
|
||
|
|
dmc.ThemeIcon("🔗", size="lg", color="purple"),
|
||
|
|
dmc.Stack([
|
||
|
|
dmc.Text("Volume-Price Correlation", size="sm", c="dimmed"),
|
||
|
|
dmc.Text(f"{stats['volume_price_correlation']:.3f}", fw=700, size="lg")
|
||
|
|
], gap="xs")
|
||
|
|
])
|
||
|
|
], p="md", shadow="sm"),
|
||
|
|
|
||
|
|
dmc.Paper([
|
||
|
|
dmc.Group([
|
||
|
|
dmc.ThemeIcon("💱", size="lg", color="teal"),
|
||
|
|
dmc.Stack([
|
||
|
|
dmc.Text("Avg Trade Size", size="sm", c="dimmed"),
|
||
|
|
dmc.Text(format_number(stats['avg_trade_size']), fw=700, size="lg")
|
||
|
|
], gap="xs")
|
||
|
|
])
|
||
|
|
], p="md", shadow="sm")
|
||
|
|
|
||
|
|
], cols=3, spacing="md", style={'margin-top': '20px'})
|
||
|
|
|
||
|
|
|
||
|
|
def create_price_stats_display(stats: Dict[str, Any]) -> html.Div:
|
||
|
|
"""Create price movement statistics display."""
|
||
|
|
if 'error' in stats:
|
||
|
|
return dmc.Alert(
|
||
|
|
"Error loading price statistics",
|
||
|
|
title="Price Analysis Error",
|
||
|
|
color="red"
|
||
|
|
)
|
||
|
|
|
||
|
|
return dmc.SimpleGrid([
|
||
|
|
dmc.Paper([
|
||
|
|
dmc.Group([
|
||
|
|
dmc.ThemeIcon("💰", size="lg", color="blue"),
|
||
|
|
dmc.Stack([
|
||
|
|
dmc.Text("Current Price", size="sm", c="dimmed"),
|
||
|
|
dmc.Text(f"${stats['current_price']:.2f}", fw=700, size="lg")
|
||
|
|
], gap="xs")
|
||
|
|
])
|
||
|
|
], p="md", shadow="sm"),
|
||
|
|
|
||
|
|
dmc.Paper([
|
||
|
|
dmc.Group([
|
||
|
|
dmc.ThemeIcon("📈", size="lg", color="green" if stats['period_return'] >= 0 else "red"),
|
||
|
|
dmc.Stack([
|
||
|
|
dmc.Text("Period Return", size="sm", c="dimmed"),
|
||
|
|
dmc.Text(f"{stats['period_return']:+.2f}%", fw=700, size="lg",
|
||
|
|
c="green" if stats['period_return'] >= 0 else "red")
|
||
|
|
], gap="xs")
|
||
|
|
])
|
||
|
|
], p="md", shadow="sm"),
|
||
|
|
|
||
|
|
dmc.Paper([
|
||
|
|
dmc.Group([
|
||
|
|
dmc.ThemeIcon("📊", size="lg", color="orange"),
|
||
|
|
dmc.Stack([
|
||
|
|
dmc.Text("Volatility", size="sm", c="dimmed"),
|
||
|
|
dmc.Text(f"{stats['volatility']:.2f}%", fw=700, size="lg")
|
||
|
|
], gap="xs")
|
||
|
|
])
|
||
|
|
], p="md", shadow="sm"),
|
||
|
|
|
||
|
|
dmc.Paper([
|
||
|
|
dmc.Group([
|
||
|
|
dmc.ThemeIcon("🎯", size="lg", color="purple"),
|
||
|
|
dmc.Stack([
|
||
|
|
dmc.Text("Bullish Ratio", size="sm", c="dimmed"),
|
||
|
|
dmc.Text(f"{stats['bullish_ratio']:.1f}%", fw=700, size="lg")
|
||
|
|
], gap="xs")
|
||
|
|
])
|
||
|
|
], p="md", shadow="sm"),
|
||
|
|
|
||
|
|
dmc.Paper([
|
||
|
|
dmc.Group([
|
||
|
|
dmc.ThemeIcon("⚡", size="lg", color="teal"),
|
||
|
|
dmc.Stack([
|
||
|
|
dmc.Text("Momentum", size="sm", c="dimmed"),
|
||
|
|
dmc.Text(f"{stats['momentum']:+.2f}%", fw=700, size="lg",
|
||
|
|
c="green" if stats['momentum'] >= 0 else "red")
|
||
|
|
], gap="xs")
|
||
|
|
])
|
||
|
|
], p="md", shadow="sm"),
|
||
|
|
|
||
|
|
dmc.Paper([
|
||
|
|
dmc.Group([
|
||
|
|
dmc.ThemeIcon("📉", size="lg", color="red"),
|
||
|
|
dmc.Stack([
|
||
|
|
dmc.Text("Max Loss", size="sm", c="dimmed"),
|
||
|
|
dmc.Text(f"{stats['max_loss']:.2f}%", fw=700, size="lg", c="red")
|
||
|
|
], gap="xs")
|
||
|
|
])
|
||
|
|
], p="md", shadow="sm")
|
||
|
|
|
||
|
|
], cols=3, spacing="md", style={'margin-top': '20px'})
|