46 lines
1.9 KiB
Python
Raw Normal View History

2025-06-07 14:01:20 +08:00
"""
Bollinger Bands indicator implementation.
"""
import pandas as pd
from ..base import BaseIndicator
class BollingerBandsIndicator(BaseIndicator):
"""
Bollinger Bands technical indicator.
Calculates a set of lines plotted two standard deviations away from a simple moving average.
Handles sparse data appropriately without interpolation.
"""
def calculate(self, df: pd.DataFrame, period: int = 20,
std_dev: float = 2.0, price_column: str = 'close') -> pd.DataFrame:
2025-06-07 14:01:20 +08:00
"""
Calculate Bollinger Bands.
Args:
df: DataFrame with OHLCV data
period: Number of periods for moving average (default 20)
std_dev: Number of standard deviations (default 2.0)
price_column: Price column to use ('open', 'high', 'low', 'close')
Returns:
DataFrame with Bollinger Bands values and metadata, indexed by timestamp
2025-06-07 14:01:20 +08:00
"""
# Validate input data
if not self.validate_dataframe(df, period):
return pd.DataFrame()
2025-06-07 14:01:20 +08:00
try:
df = df.copy()
2025-06-07 14:01:20 +08:00
df['middle_band'] = df[price_column].rolling(window=period, min_periods=period).mean()
df['std'] = df[price_column].rolling(window=period, min_periods=period).std()
df['upper_band'] = df['middle_band'] + (df['std'] * std_dev)
df['lower_band'] = df['middle_band'] - (df['std'] * std_dev)
# Only keep rows with valid bands, and only 'timestamp', 'upper_band', 'middle_band', 'lower_band' columns
result_df = df.loc[df['middle_band'].notna() & df['upper_band'].notna() & df['lower_band'].notna(), ['timestamp', 'upper_band', 'middle_band', 'lower_band']].copy()
result_df.set_index('timestamp', inplace=True)
return result_df
except Exception:
return pd.DataFrame()