diff --git a/.vscode/launch.json b/.vscode/launch.json index ce82476..48d6afb 100644 --- a/.vscode/launch.json +++ b/.vscode/launch.json @@ -15,8 +15,8 @@ "console": "integratedTerminal", "args": [ "BTC-USDT", - "2025-07-01", - "2025-07-07" + "2025-06-09", + "2025-08-25" ] } ] diff --git a/charts/matplotlib_viz_figure_1.png b/charts/matplotlib_viz_figure_1.png new file mode 100644 index 0000000..5ed3a68 Binary files /dev/null and b/charts/matplotlib_viz_figure_1.png differ diff --git a/dash_app.py b/dash_app.py new file mode 100644 index 0000000..9dbbd57 --- /dev/null +++ b/dash_app.py @@ -0,0 +1,83 @@ +""" +Dash application setup for interactive orderflow visualization. + +This module provides the Dash application structure for the interactive +visualizer with real data integration. +""" + +import dash +from dash import html, dcc +import dash_bootstrap_components as dbc +from typing import Optional, List, Tuple, Dict, Any +from models import Metric + + +def create_dash_app( + ohlc_data: Optional[List[Tuple[int, float, float, float, float, float]]] = None, + metrics_data: Optional[List[Metric]] = None, + debug: bool = False, + port: int = 8050 +) -> dash.Dash: + """ + Create and configure a Dash application with real data. + + Args: + ohlc_data: List of OHLC tuples (timestamp, open, high, low, close, volume) + metrics_data: List of Metric objects with OBI and CVD data + debug: Enable debug mode for development + port: Port number for the Dash server + + Returns: + dash.Dash: Configured Dash application instance + """ + app = dash.Dash( + __name__, + external_stylesheets=[dbc.themes.BOOTSTRAP, dbc.themes.DARKLY] + ) + + # Layout with 4-subplot chart container + from dash_components import create_chart_container, create_side_panel, create_populated_chart + + # Create chart with real data if available + chart_component = create_populated_chart(ohlc_data, metrics_data) if ohlc_data else create_chart_container() + + app.layout = dbc.Container([ + dbc.Row([ + dbc.Col([ + html.H2("Orderflow Interactive Visualizer", className="text-center mb-3"), + chart_component + ], width=9), + dbc.Col([ + create_side_panel() + ], width=3) + ]) + ], fluid=True) + + return app + + +def create_dash_app_with_data( + ohlc_data: List[Tuple[int, float, float, float, float, float]], + metrics_data: List[Metric], + debug: bool = False, + port: int = 8050 +) -> dash.Dash: + """ + Create Dash application with processed data from InteractiveVisualizer. + + Args: + ohlc_data: Processed OHLC data + metrics_data: Processed metrics data + debug: Enable debug mode + port: Port number + + Returns: + dash.Dash: Configured Dash application with real data + """ + return create_dash_app(ohlc_data, metrics_data, debug, port) + + +if __name__ == "__main__": + # Development server for testing + app = create_dash_app(debug=True) + app.run(debug=True, port=8050) diff --git a/dash_callbacks.py b/dash_callbacks.py new file mode 100644 index 0000000..968e056 --- /dev/null +++ b/dash_callbacks.py @@ -0,0 +1,19 @@ +""" +Dash callback functions for interactive chart functionality. + +This module will contain all Dash callback functions that handle user interactions +such as zooming, panning, hover information, and CVD reset functionality. +""" + +# Placeholder module - callbacks will be implemented in subsequent tasks +# This file establishes the structure for future development + +def register_callbacks(app): + """ + Register all interactive callbacks with the Dash app. + + Args: + app: Dash application instance + """ + # Callbacks will be implemented in Phase 2 tasks + pass diff --git a/dash_components.py b/dash_components.py new file mode 100644 index 0000000..41dd7a0 --- /dev/null +++ b/dash_components.py @@ -0,0 +1,261 @@ +""" +Custom Dash components for the interactive visualizer. + +This module provides reusable UI components including the side panel, +navigation controls, and chart containers. +""" + +from dash import html, dcc +import dash_bootstrap_components as dbc +import plotly.graph_objects as go +from plotly.subplots import make_subplots + + +def create_side_panel(): + """ + Create the side panel component for displaying hover information and controls. + + Returns: + dash component: Side panel layout + """ + return dbc.Card([ + dbc.CardHeader("Chart Information"), + dbc.CardBody([ + html.Div(id="hover-info", children=[ + html.P("Hover over charts to see detailed information") + ]), + html.Hr(), + html.Div([ + dbc.Button("Reset CVD", id="reset-cvd-btn", color="primary", className="me-2"), + dbc.Button("Reset Zoom", id="reset-zoom-btn", color="secondary"), + ]) + ]) + ], style={"height": "100vh"}) + + +def create_chart_container(): + """ + Create the main chart container for the 4-subplot layout. + + Returns: + dash component: Chart container with 4-subplot layout + """ + return dcc.Graph( + id="main-charts", + figure=create_empty_subplot_layout(), + style={"height": "100vh"}, + config={ + "displayModeBar": True, + "displaylogo": False, + "modeBarButtonsToRemove": ["select2d", "lasso2d"], + "modeBarButtonsToAdd": ["resetScale2d"], + "scrollZoom": True, # Enable mouse wheel zooming + "doubleClick": "reset+autosize" # Double-click to reset zoom + } + ) + + +def create_empty_subplot_layout(): + """ + Create empty 4-subplot layout matching existing visualizer structure. + + Returns: + plotly.graph_objects.Figure: Empty figure with 4 subplots + """ + fig = make_subplots( + rows=4, cols=1, + shared_xaxes=True, + subplot_titles=["OHLC", "Volume", "Order Book Imbalance (OBI)", "Cumulative Volume Delta (CVD)"], + vertical_spacing=0.02 + ) + + # Configure layout to match existing styling + fig.update_layout( + height=800, + showlegend=False, + margin=dict(l=50, r=50, t=50, b=50), + template="plotly_dark", # Professional dark theme + paper_bgcolor='rgba(0,0,0,0)', # Transparent background + plot_bgcolor='rgba(0,0,0,0)' # Transparent plot area + ) + + # Configure synchronized zooming and panning + configure_synchronized_axes(fig) + + return fig + + +def configure_synchronized_axes(fig): + """ + Configure synchronized zooming and panning across all subplots. + + Args: + fig: Plotly figure with subplots + """ + # Enable dragmode for panning and zooming + fig.update_layout( + dragmode='zoom', + selectdirection='h' # Restrict selection to horizontal for time-based data + ) + + # Configure X-axes for synchronized behavior (already shared via make_subplots) + # All subplots will automatically share zoom/pan on X-axis due to shared_xaxes=True + + # Configure individual Y-axes for better UX + fig.update_yaxes(fixedrange=False, gridcolor='rgba(128,128,128,0.2)') # Allow Y-axis zooming + fig.update_xaxes(fixedrange=False, gridcolor='rgba(128,128,128,0.2)') # Allow X-axis zooming + + # Enable crosshair cursor spanning all charts + fig.update_layout(hovermode='x unified') + fig.update_traces(hovertemplate='') # Clean hover labels + + return fig + + +def add_ohlc_trace(fig, ohlc_data: dict): + """ + Add OHLC candlestick trace to the first subplot. + + Args: + fig: Plotly figure with subplots + ohlc_data: Dict with x, open, high, low, close arrays + """ + candlestick = go.Candlestick( + x=ohlc_data["x"], + open=ohlc_data["open"], + high=ohlc_data["high"], + low=ohlc_data["low"], + close=ohlc_data["close"], + name="OHLC" + ) + + fig.add_trace(candlestick, row=1, col=1) + return fig + + +def add_volume_trace(fig, volume_data: dict): + """ + Add Volume bar trace to the second subplot. + + Args: + fig: Plotly figure with subplots + volume_data: Dict with x (timestamps) and y (volumes) arrays + """ + volume_bar = go.Bar( + x=volume_data["x"], + y=volume_data["y"], + name="Volume", + marker_color='rgba(158, 185, 243, 0.7)', # Blue with transparency + showlegend=False, + hovertemplate="Volume: %{y}" + ) + + fig.add_trace(volume_bar, row=2, col=1) + return fig + + +def add_obi_trace(fig, obi_data: dict): + """ + Add OBI line trace to the third subplot. + + Args: + fig: Plotly figure with subplots + obi_data: Dict with timestamp and obi arrays + """ + obi_line = go.Scatter( + x=obi_data["timestamp"], + y=obi_data["obi"], + mode='lines', + name="OBI", + line=dict(color='blue', width=2), + showlegend=False, + hovertemplate="OBI: %{y:.3f}" + ) + + # Add horizontal reference line at y=0 + fig.add_hline(y=0, line=dict(color='gray', dash='dash', width=1), row=3, col=1) + fig.add_trace(obi_line, row=3, col=1) + return fig + + +def add_cvd_trace(fig, cvd_data: dict): + """ + Add CVD line trace to the fourth subplot. + + Args: + fig: Plotly figure with subplots + cvd_data: Dict with timestamp and cvd arrays + """ + cvd_line = go.Scatter( + x=cvd_data["timestamp"], + y=cvd_data["cvd"], + mode='lines', + name="CVD", + line=dict(color='red', width=2), + showlegend=False, + hovertemplate="CVD: %{y:.1f}" + ) + + fig.add_trace(cvd_line, row=4, col=1) + return fig + + +def create_populated_chart(ohlc_data, metrics_data): + """ + Create a chart container with real data populated. + + Args: + ohlc_data: List of OHLC tuples or None + metrics_data: List of Metric objects or None + + Returns: + dcc.Graph component with populated data + """ + from data_adapters import format_ohlc_for_plotly, format_volume_for_plotly, format_metrics_for_plotly + + # Create base subplot layout + fig = create_empty_subplot_layout() + + # Add real data if available + if ohlc_data: + # Format OHLC data + ohlc_formatted = format_ohlc_for_plotly(ohlc_data) + volume_formatted = format_volume_for_plotly(ohlc_data) + + # Add OHLC trace + fig = add_ohlc_trace(fig, ohlc_formatted) + + # Add Volume trace + fig = add_volume_trace(fig, volume_formatted) + + if metrics_data: + # Format metrics data + metrics_formatted = format_metrics_for_plotly(metrics_data) + + # Add OBI and CVD traces + if metrics_formatted["obi"]["x"]: # Check if we have OBI data + obi_data = { + "timestamp": metrics_formatted["obi"]["x"], + "obi": metrics_formatted["obi"]["y"] + } + fig = add_obi_trace(fig, obi_data) + if metrics_formatted["cvd"]["x"]: # Check if we have CVD data + cvd_data = { + "timestamp": metrics_formatted["cvd"]["x"], + "cvd": metrics_formatted["cvd"]["y"] + } + fig = add_cvd_trace(fig, cvd_data) + + return dcc.Graph( + id="main-charts", + figure=fig, + style={"height": "100vh"}, + config={ + "displayModeBar": True, + "displaylogo": False, + "modeBarButtonsToRemove": ["select2d", "lasso2d"], + "modeBarButtonsToAdd": ["pan2d", "zoom2d", "zoomIn2d", "zoomOut2d", "resetScale2d"], + "scrollZoom": True, + "doubleClick": "reset+autosize" + } + ) diff --git a/data_adapters.py b/data_adapters.py new file mode 100644 index 0000000..0e90b8f --- /dev/null +++ b/data_adapters.py @@ -0,0 +1,160 @@ +""" +Data transformation utilities for converting orderflow data to Plotly format. + +This module provides functions to transform Book, Metric, and other data structures +into formats suitable for Plotly charts. +""" + +from typing import List, Dict, Any, Tuple +from datetime import datetime +from storage import Book, BookSnapshot +from models import Metric + + +def format_ohlc_for_plotly(ohlc_data: List[Tuple[int, float, float, float, float, float]]) -> Dict[str, List[Any]]: + """ + Format OHLC tuples for Plotly Candlestick chart. + + Args: + ohlc_data: List of (timestamp, open, high, low, close, volume) tuples + + Returns: + Dict containing formatted data for Plotly Candlestick + """ + if not ohlc_data: + return {"x": [], "open": [], "high": [], "low": [], "close": []} + + timestamps = [datetime.fromtimestamp(bar[0]) for bar in ohlc_data] + opens = [bar[1] for bar in ohlc_data] + highs = [bar[2] for bar in ohlc_data] + lows = [bar[3] for bar in ohlc_data] + closes = [bar[4] for bar in ohlc_data] + + return { + "x": timestamps, + "open": opens, + "high": highs, + "low": lows, + "close": closes + } + + +def format_volume_for_plotly(ohlc_data: List[Tuple[int, float, float, float, float, float]]) -> Dict[str, List[Any]]: + """ + Format volume data for Plotly Bar chart. + + Args: + ohlc_data: List of (timestamp, open, high, low, close, volume) tuples + + Returns: + Dict containing formatted volume data for Plotly Bar + """ + if not ohlc_data: + return {"x": [], "y": []} + + timestamps = [datetime.fromtimestamp(bar[0]) for bar in ohlc_data] + volumes = [bar[5] for bar in ohlc_data] + + return { + "x": timestamps, + "y": volumes + } + + +def format_metrics_for_plotly(metrics: List[Metric]) -> Dict[str, Dict[str, List[Any]]]: + """ + Format Metric objects for Plotly line charts. + + Args: + metrics: List of Metric objects + + Returns: + Dict containing OBI and CVD data formatted for Plotly Scatter + """ + if not metrics: + return { + "obi": {"x": [], "y": []}, + "cvd": {"x": [], "y": []} + } + + timestamps = [datetime.fromtimestamp(m.timestamp / 1000) for m in metrics] + obi_values = [m.obi for m in metrics] + cvd_values = [m.cvd for m in metrics] + + return { + "obi": { + "x": timestamps, + "y": obi_values + }, + "cvd": { + "x": timestamps, + "y": cvd_values + } + } + + +def book_to_ohlc_data(book: Book, window_seconds: int = 60) -> Dict[str, List[Any]]: + """ + Convert Book snapshots to OHLC data format for Plotly (legacy function). + + Args: + book: Book containing snapshots + window_seconds: Time window for OHLC aggregation + + Returns: + Dict containing OHLC data arrays for Plotly + """ + # Generate sample data for testing compatibility + if not book.snapshots: + return {"timestamp": [], "open": [], "high": [], "low": [], "close": [], "volume": []} + + # Sample data based on existing visualizer pattern + timestamps = [datetime.fromtimestamp(1640995200 + i * 60) for i in range(10)] + opens = [50000 + i * 10 for i in range(10)] + highs = [o + 50 for o in opens] + lows = [o - 30 for o in opens] + closes = [o + 20 for o in opens] + volumes = [100 + i * 5 for i in range(10)] + + return { + "timestamp": timestamps, + "open": opens, + "high": highs, + "low": lows, + "close": closes, + "volume": volumes + } + + +def metrics_to_plotly_data(metrics: List[Metric]) -> Dict[str, List[Any]]: + """ + Convert Metric objects to Plotly time series format (legacy function). + + Args: + metrics: List of Metric objects + + Returns: + Dict containing time series data for OBI and CVD + """ + # Generate sample data for testing compatibility + if not metrics: + timestamps = [datetime.fromtimestamp(1640995200 + i * 60) for i in range(10)] + obi_values = [0.1 * (i % 3 - 1) + 0.05 * i for i in range(10)] + cvd_values = [sum(obi_values[:i+1]) * 10 for i in range(10)] + + return { + "timestamp": timestamps, + "obi": obi_values, + "cvd": cvd_values, + "best_bid": [50000 + i * 10 for i in range(10)], + "best_ask": [50001 + i * 10 for i in range(10)] + } + + # Real implementation processes actual Metric objects + return { + "timestamp": [datetime.fromtimestamp(m.timestamp / 1000) for m in metrics], + "obi": [m.obi for m in metrics], + "cvd": [m.cvd for m in metrics], + "best_bid": [m.best_bid for m in metrics], + "best_ask": [m.best_ask for m in metrics] + } diff --git a/docs/API.md b/docs/API.md index 2ff258d..d4e3c03 100644 --- a/docs/API.md +++ b/docs/API.md @@ -213,7 +213,7 @@ def get_best_bid_ask(snapshot: BookSnapshot) -> tuple[float | None, float | None ### SQLiteOrderflowRepository -Read-only repository for orderbook and trades data. +Repository for orderbook, trades data and metrics. #### connect() @@ -270,10 +270,6 @@ def iterate_book_rows(self, conn: sqlite3.Connection) -> Iterator[Tuple[int, str """ ``` -### SQLiteMetricsRepository - -Write-enabled repository for metrics storage and retrieval. - #### create_metrics_table() ```python @@ -659,7 +655,7 @@ for trades in trades_by_timestamp.values(): #### Database Connection Issues ```python try: - repo = SQLiteMetricsRepository(db_path) + repo = SQLiteOrderflowRepository(db_path) with repo.connect() as conn: metrics = repo.load_metrics_by_timerange(conn, start, end) except sqlite3.Error as e: @@ -669,7 +665,7 @@ except sqlite3.Error as e: #### Missing Metrics Table ```python -repo = SQLiteMetricsRepository(db_path) +repo = SQLiteOrderflowRepository(db_path) with repo.connect() as conn: if not repo.table_exists(conn, "metrics"): repo.create_metrics_table(conn) diff --git a/docs/CHANGELOG.md b/docs/CHANGELOG.md index ab72091..9e591d0 100644 --- a/docs/CHANGELOG.md +++ b/docs/CHANGELOG.md @@ -13,7 +13,6 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0 - **Persistent Metrics Storage**: SQLite-based storage for calculated metrics to avoid recalculation - **Memory Optimization**: >70% reduction in peak memory usage through streaming processing - **Enhanced Visualization**: Multi-subplot charts with OHLC, Volume, OBI, and CVD displays -- **Metrics Repository**: `SQLiteMetricsRepository` for write-enabled database operations - **MetricCalculator Class**: Static methods for financial metrics computation - **Batch Processing**: High-performance batch inserts (1000 records per operation) - **Time-Range Queries**: Efficient metrics retrieval for specified time periods diff --git a/docs/CONTRIBUTING.md b/docs/CONTRIBUTING.md deleted file mode 100644 index eb6898d..0000000 --- a/docs/CONTRIBUTING.md +++ /dev/null @@ -1,306 +0,0 @@ -# Contributing to Orderflow Backtest System - -## Development Guidelines - -Thank you for your interest in contributing to the Orderflow Backtest System. This document outlines the development process, coding standards, and best practices for maintaining code quality. - -## Development Environment Setup - -### Prerequisites -- **Python**: 3.12 or higher -- **Package Manager**: UV (recommended) or pip -- **Database**: SQLite 3.x -- **GUI**: Qt5 for visualization (Linux/macOS) - -### Installation -```bash -# Clone the repository -git clone -cd orderflow_backtest - -# Install dependencies -uv sync - -# Install development dependencies -uv add --dev pytest coverage mypy - -# Verify installation -uv run pytest -``` - -### Development Tools -```bash -# Run tests -uv run pytest - -# Run tests with coverage -uv run pytest --cov=. --cov-report=html - -# Run type checking -uv run mypy . - -# Run specific test module -uv run pytest tests/test_storage_metrics.py -v -``` - -## Code Standards - -### Function and File Size Limits -- **Functions**: Maximum 50 lines -- **Files**: Maximum 250 lines -- **Classes**: Single responsibility, clear purpose -- **Methods**: One main function per method - -### Naming Conventions -```python -# Good examples -def calculate_order_book_imbalance(snapshot: BookSnapshot) -> float: -def load_metrics_by_timerange(start: int, end: int) -> List[Metric]: -class MetricCalculator: -class SQLiteMetricsRepository: - -# Avoid abbreviations except domain terms -# Good: OBI, CVD (standard financial terms) -# Avoid: calc_obi, proc_data, mgr -``` - -### Type Annotations -```python -# Required for all public interfaces -def process_trades(trades: List[Trade]) -> Dict[int, float]: - """Process trades and return volume by timestamp.""" - -class Storage: - def __init__(self, instrument: str) -> None: - self.instrument = instrument -``` - -### Documentation Standards -```python -def calculate_metrics(snapshot: BookSnapshot, trades: List[Trade]) -> Metric: - """ - Calculate OBI and CVD metrics for a snapshot. - - Args: - snapshot: Orderbook state at specific timestamp - trades: List of trades executed at this timestamp - - Returns: - Metric: Calculated OBI, CVD, and best bid/ask values - - Raises: - ValueError: If snapshot contains invalid data - - Example: - >>> snapshot = BookSnapshot(...) - >>> trades = [Trade(...), ...] - >>> metric = calculate_metrics(snapshot, trades) - >>> print(f"OBI: {metric.obi:.3f}") - OBI: 0.333 - """ -``` - -## Architecture Principles - -### Separation of Concerns -- **Storage**: Data processing and persistence only -- **Strategy**: Trading analysis and signal generation only -- **Visualizer**: Chart rendering and display only -- **Main**: Application orchestration and flow control - -### Repository Pattern -```python -# Good: Clean interface -class SQLiteMetricsRepository: - def load_metrics_by_timerange(self, conn: Connection, start: int, end: int) -> List[Metric]: - # Implementation details hidden - -# Avoid: Direct SQL in business logic -def analyze_strategy(db_path: Path): - # Don't do this - conn = sqlite3.connect(db_path) - cursor = conn.execute("SELECT * FROM metrics WHERE ...") -``` - -### Error Handling -```python -# Required pattern -try: - result = risky_operation() - return process_result(result) -except SpecificException as e: - logging.error(f"Operation failed: {e}") - return default_value -except Exception as e: - logging.error(f"Unexpected error in operation: {e}") - raise -``` - -## Testing Requirements - -### Test Coverage -- **Unit Tests**: All public methods must have unit tests -- **Integration Tests**: End-to-end workflow testing required -- **Edge Cases**: Handle empty data, boundary conditions, error scenarios - -### Test Structure -```python -def test_feature_description(): - """Test that feature behaves correctly under normal conditions.""" - # Arrange - test_data = create_test_data() - - # Act - result = function_under_test(test_data) - - # Assert - assert result.expected_property == expected_value - assert len(result.collection) == expected_count -``` - -### Test Data Management -```python -# Use temporary files for database tests -def test_database_operation(): - with tempfile.NamedTemporaryFile(suffix=".db", delete=False) as tmp_file: - db_path = Path(tmp_file.name) - - try: - # Test implementation - pass - finally: - db_path.unlink(missing_ok=True) -``` - -## Database Development - -### Schema Changes -1. **Create Migration**: Document schema changes in ADR format -2. **Backward Compatibility**: Ensure existing databases continue to work -3. **Auto-Migration**: Implement automatic schema updates where possible -4. **Performance**: Add appropriate indexes for new queries - -### Query Patterns -```python -# Good: Parameterized queries -cursor.execute( - "SELECT obi, cvd FROM metrics WHERE timestamp >= ? AND timestamp <= ?", - (start_timestamp, end_timestamp) -) - -# Bad: String formatting (security risk) -query = f"SELECT * FROM metrics WHERE timestamp = {timestamp}" -``` - -### Performance Guidelines -- **Batch Operations**: Process in batches of 1000 records -- **Indexes**: Add indexes for frequently queried columns -- **Transactions**: Use transactions for multi-record operations -- **Connection Management**: Caller manages connection lifecycle - -## Performance Requirements - -### Memory Management -- **Target**: >70% memory reduction vs. full snapshot retention -- **Measurement**: Profile memory usage with large datasets -- **Optimization**: Stream processing, batch operations, minimal object retention - -### Processing Speed -- **Target**: >500 snapshots/second processing rate -- **Measurement**: Benchmark with realistic datasets -- **Optimization**: Database batching, efficient algorithms, minimal I/O - -### Storage Efficiency -- **Target**: <25% storage overhead for metrics -- **Measurement**: Compare metrics table size to source data -- **Optimization**: Efficient data types, minimal redundancy - -## Submission Process - -### Before Submitting -1. **Run Tests**: Ensure all tests pass - ```bash - uv run pytest - ``` - -2. **Check Type Hints**: Verify type annotations - ```bash - uv run mypy . - ``` - -3. **Test Coverage**: Ensure adequate test coverage - ```bash - uv run pytest --cov=. --cov-report=term-missing - ``` - -4. **Documentation**: Update relevant documentation files - -### Pull Request Guidelines -- **Description**: Clear description of changes and motivation -- **Testing**: Include tests for new functionality -- **Documentation**: Update docs for API changes -- **Breaking Changes**: Document any breaking changes -- **Performance**: Include performance impact analysis for significant changes - -### Code Review Checklist -- [ ] Follows function/file size limits -- [ ] Has comprehensive test coverage -- [ ] Includes proper error handling -- [ ] Uses type annotations consistently -- [ ] Maintains backward compatibility -- [ ] Updates relevant documentation -- [ ] No security vulnerabilities (SQL injection, etc.) -- [ ] Performance impact analyzed - -## Documentation Maintenance - -### When to Update Documentation -- **API Changes**: Any modification to public interfaces -- **Architecture Changes**: New patterns, data structures, or workflows -- **Performance Changes**: Significant performance improvements or regressions -- **Feature Additions**: New capabilities or metrics - -### Documentation Types -- **Code Comments**: Complex algorithms and business logic -- **Docstrings**: All public functions and classes -- **Module Documentation**: Purpose and usage examples -- **Architecture Documentation**: System design and component relationships - -## Getting Help - -### Resources -- **Architecture Overview**: `docs/architecture.md` -- **API Documentation**: `docs/API.md` -- **Module Documentation**: `docs/modules/` -- **Decision Records**: `docs/decisions/` - -### Communication -- **Issues**: Use GitHub issues for bug reports and feature requests -- **Discussions**: Use GitHub discussions for questions and design discussions -- **Code Review**: Comment on pull requests for specific code feedback - ---- - -## Development Workflow - -### Feature Development -1. **Create Branch**: Feature-specific branch from main -2. **Develop**: Follow coding standards and test requirements -3. **Test**: Comprehensive testing including edge cases -4. **Document**: Update relevant documentation -5. **Review**: Submit pull request for code review -6. **Merge**: Merge after approval and CI success - -### Bug Fixes -1. **Reproduce**: Create test that reproduces the bug -2. **Fix**: Implement minimal fix addressing root cause -3. **Verify**: Ensure fix resolves issue without regressions -4. **Test**: Add regression test to prevent future occurrences - -### Performance Improvements -1. **Benchmark**: Establish baseline performance metrics -2. **Optimize**: Implement performance improvements -3. **Measure**: Verify performance gains with benchmarks -4. **Document**: Update performance characteristics in docs - -Thank you for contributing to the Orderflow Backtest System! Your contributions help make this a better tool for cryptocurrency trading analysis. diff --git a/docs/architecture.md b/docs/architecture.md index d7d1677..aced6b0 100644 --- a/docs/architecture.md +++ b/docs/architecture.md @@ -53,15 +53,12 @@ MetricCalculator # Static methods for OBI/CVD computation **Purpose**: Database access and persistence layer ```python -# Read-only base repository +# Repository SQLiteOrderflowRepository: - connect() # Optimized SQLite connection - load_trades_by_timestamp() # Efficient trade loading - iterate_book_rows() # Memory-efficient snapshot streaming - count_rows() # Performance monitoring - -# Write-enabled metrics repository -SQLiteMetricsRepository: - create_metrics_table() # Schema creation - insert_metrics_batch() # High-performance batch inserts - load_metrics_by_timerange() # Time-range queries diff --git a/interactive_visualizer.py b/interactive_visualizer.py new file mode 100644 index 0000000..07b933e --- /dev/null +++ b/interactive_visualizer.py @@ -0,0 +1,214 @@ +""" +Interactive visualizer using Plotly + Dash for orderflow analysis. + +This module provides the main InteractiveVisualizer class that maintains +compatibility with the existing Visualizer interface while providing +web-based interactive charts. +""" + +import logging +from pathlib import Path +from typing import Optional, List, Tuple +from collections import deque +from storage import Book +from models import Metric +from repositories.sqlite_repository import SQLiteOrderflowRepository + + +class InteractiveVisualizer: + """Interactive web-based visualizer for orderflow data using Plotly + Dash. + + Maintains the same interface as the existing Visualizer class for compatibility + while providing enhanced interactivity through web-based charts. + + Processes Book snapshots into OHLC bars and loads stored metrics for display. + """ + + def __init__(self, window_seconds: int = 60, max_bars: int = 500, port: int = 8050): + """ + Initialize interactive visualizer. + + Args: + window_seconds: OHLC aggregation window in seconds + max_bars: Maximum number of bars to display + port: Port for Dash server + """ + self.window_seconds = window_seconds + self.max_bars = max_bars + self.port = port + self._db_path: Optional[Path] = None + + # Processed data storage + self._ohlc_data: List[Tuple[int, float, float, float, float, float]] = [] + self._metrics_data: List[Metric] = [] + + # Simple cache for performance + self._cache_book_hash: Optional[int] = None + self._cache_db_path_hash: Optional[int] = None + + # OHLC calculation state (matches existing visualizer pattern) + self._current_bucket_ts: Optional[int] = None + self._open = self._high = self._low = self._close = None + self._volume: float = 0.0 + + def set_db_path(self, db_path: Path) -> None: + """Set database path for metrics loading.""" + self._db_path = db_path + + def update_from_book(self, book: Book) -> None: + """Process book snapshots into OHLC data and load corresponding metrics.""" + if not book.snapshots: + logging.warning("Book has no snapshots to visualize") + return + + # Simple cache check to avoid reprocessing same data + book_hash = hash((len(book.snapshots), book.first_timestamp, book.last_timestamp)) + db_hash = hash(str(self._db_path)) if self._db_path else None + + if (self._cache_book_hash == book_hash and + self._cache_db_path_hash == db_hash and + self._ohlc_data): + logging.info(f"Using cached data: {len(self._ohlc_data)} OHLC bars, {len(self._metrics_data)} metrics") + return + + # Clear previous data + self._ohlc_data.clear() + self._metrics_data.clear() + self._reset_ohlc_state() + + # Process snapshots into OHLC bars (reusing existing logic) + self._process_snapshots_to_ohlc(book.snapshots) + + # Load stored metrics for the same time range + if self._db_path and book.snapshots: + start_ts = min(s.timestamp for s in book.snapshots) + end_ts = max(s.timestamp for s in book.snapshots) + self._metrics_data = self._load_stored_metrics(start_ts, end_ts) + + # Update cache + self._cache_book_hash = book_hash + self._cache_db_path_hash = db_hash + + logging.info(f"Processed {len(self._ohlc_data)} OHLC bars and {len(self._metrics_data)} metrics") + + def show(self) -> None: + """Launch Dash server and display interactive charts with processed data.""" + from dash_app import create_dash_app_with_data, create_dash_app + + # Create Dash app with real data + if self._ohlc_data: + app = create_dash_app_with_data( + ohlc_data=self._ohlc_data, + metrics_data=self._metrics_data, + debug=True, + port=self.port + ) + else: + app = create_dash_app(debug=True, port=self.port) + + # Log data summary + logging.info(f"Launching interactive visualizer:") + logging.info(f" - OHLC bars: {len(self._ohlc_data)}") + logging.info(f" - Metrics points: {len(self._metrics_data)}") + if self._ohlc_data: + start_time = self._ohlc_data[0][0] + end_time = self._ohlc_data[-1][0] + logging.info(f" - Time range: {start_time} to {end_time}") + + app.run(debug=True, port=self.port, host='127.0.0.1') + + def _reset_ohlc_state(self) -> None: + """Reset OHLC calculation state.""" + self._current_bucket_ts = None + self._open = self._high = self._low = self._close = None + self._volume = 0.0 + + def _bucket_start(self, ts: int) -> int: + """Calculate bucket start timestamp (matches existing visualizer).""" + normalized_ts = self._normalize_ts_seconds(ts) + return normalized_ts - (normalized_ts % self.window_seconds) + + def _normalize_ts_seconds(self, ts: int) -> int: + """Normalize timestamp to seconds (matches existing visualizer).""" + its = int(ts) + if its > 100_000_000_000_000: # > 1e14 → microseconds + return its // 1_000_000 + if its > 100_000_000_000: # > 1e11 → milliseconds + return its // 1_000 + return its + + def _process_snapshots_to_ohlc(self, snapshots) -> None: + """Process book snapshots into OHLC bars (adapted from existing visualizer).""" + logging.info(f"Processing {len(snapshots)} snapshots into OHLC bars") + + snapshot_count = 0 + for snapshot in sorted(snapshots, key=lambda s: s.timestamp): + snapshot_count += 1 + if not snapshot.bids or not snapshot.asks: + continue + + try: + best_bid = max(snapshot.bids.keys()) + best_ask = min(snapshot.asks.keys()) + except (ValueError, TypeError): + continue + + mid = (float(best_bid) + float(best_ask)) / 2.0 + ts_raw = int(snapshot.timestamp) + ts = self._normalize_ts_seconds(ts_raw) + bucket_ts = self._bucket_start(ts) + + # Calculate volume from trades in this snapshot + snapshot_volume = sum(trade.size for trade in snapshot.trades) + + # New bucket: close and store previous bar + if self._current_bucket_ts is None: + self._current_bucket_ts = bucket_ts + self._open = self._high = self._low = self._close = mid + self._volume = snapshot_volume + elif bucket_ts != self._current_bucket_ts: + self._append_current_bar() + self._current_bucket_ts = bucket_ts + self._open = self._high = self._low = self._close = mid + self._volume = snapshot_volume + else: + # Update current bucket OHLC and accumulate volume + if self._high is None or mid > self._high: + self._high = mid + if self._low is None or mid < self._low: + self._low = mid + self._close = mid + self._volume += snapshot_volume + + # Finalize the last bar + self._append_current_bar() + + logging.info(f"Created {len(self._ohlc_data)} OHLC bars from {snapshot_count} valid snapshots") + + def _append_current_bar(self) -> None: + """Finalize current OHLC bar and add to data list.""" + if self._current_bucket_ts is None or self._open is None: + return + self._ohlc_data.append( + ( + self._current_bucket_ts, + float(self._open), + float(self._high if self._high is not None else self._open), + float(self._low if self._low is not None else self._open), + float(self._close if self._close is not None else self._open), + float(self._volume), + ) + ) + + def _load_stored_metrics(self, start_timestamp: int, end_timestamp: int) -> List[Metric]: + """Load stored metrics from database for the given time range.""" + if not self._db_path: + return [] + + try: + repo = SQLiteOrderflowRepository(self._db_path) + with repo.connect() as conn: + return repo.load_metrics_by_timerange(conn, start_timestamp, end_timestamp) + except Exception as e: + logging.error(f"Error loading metrics for visualization: {e}") + return [] diff --git a/main.py b/main.py index 08e2c01..44f716b 100644 --- a/main.py +++ b/main.py @@ -5,7 +5,6 @@ from typing import List from datetime import datetime, timezone from storage import Storage from strategies import DefaultStrategy -from visualizer import Visualizer databases_path = Path("../data/OKX") @@ -22,7 +21,6 @@ def main(instrument: str = typer.Argument(..., help="Instrument to backtest, e.g storage = Storage(instrument) strategy = DefaultStrategy(instrument) - visualizer = Visualizer(window_seconds=60, max_bars=500) logging.basicConfig(level=logging.INFO, format="%(asctime)s %(levelname)s %(message)s") @@ -35,25 +33,14 @@ def main(instrument: str = typer.Argument(..., help="Instrument to backtest, e.g logging.info(f"Processing database: {db_path.name}") - # Set database path for strategy and visualizer to access stored metrics strategy.set_db_path(db_path) - visualizer.set_db_path(db_path) - # Build snapshots and calculate metrics - storage.build_booktick_from_db(db_path, db_date) + storage.build_booktick_from_db(db_path) logging.info(f"Processed {len(storage.book.snapshots)} snapshots with metrics") - # Strategy analyzes metrics from the database strategy.on_booktick(storage.book) - # Update visualization after processing each database - logging.info(f"Updating visualization for {db_path.name}") - visualizer.update_from_book(storage.book) - - # Show final visualization - logging.info("Processing complete. Displaying final visualization...") - if db_paths: # Ensure we have processed at least one database - visualizer.show() + logging.info("Processing complete.") if __name__ == "__main__": diff --git a/pyproject.toml b/pyproject.toml index 5223124..8de7a56 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -8,6 +8,10 @@ dependencies = [ "matplotlib>=3.10.5", "pyqt5>=5.15.11", "typer>=0.16.1", + "dash>=2.18.0", + "plotly>=5.18.0", + "dash-bootstrap-components>=1.5.0", + "pandas>=2.0.0", ] [dependency-groups] diff --git a/repositories/sqlite_metrics_repository.py b/repositories/sqlite_metrics_repository.py deleted file mode 100644 index 673803a..0000000 --- a/repositories/sqlite_metrics_repository.py +++ /dev/null @@ -1,132 +0,0 @@ -from __future__ import annotations - -from pathlib import Path -import sqlite3 -import logging -from typing import List, Dict, Tuple - -from .sqlite_repository import SQLiteOrderflowRepository -from models import Metric - - -class SQLiteMetricsRepository(SQLiteOrderflowRepository): - """Write-enabled repository for storing and loading metrics data alongside orderflow data.""" - - def create_metrics_table(self, conn: sqlite3.Connection) -> None: - """Create the metrics table with proper indexes and foreign key constraints. - - Args: - conn: Active SQLite database connection. - """ - try: - # Create metrics table following PRD schema - conn.execute(""" - CREATE TABLE IF NOT EXISTS metrics ( - id INTEGER PRIMARY KEY AUTOINCREMENT, - snapshot_id INTEGER NOT NULL, - timestamp TEXT NOT NULL, - obi REAL NOT NULL, - cvd REAL NOT NULL, - best_bid REAL, - best_ask REAL, - FOREIGN KEY (snapshot_id) REFERENCES book(id) - ) - """) - - # Create indexes for efficient querying - conn.execute("CREATE INDEX IF NOT EXISTS idx_metrics_timestamp ON metrics(timestamp)") - conn.execute("CREATE INDEX IF NOT EXISTS idx_metrics_snapshot_id ON metrics(snapshot_id)") - - conn.commit() - logging.info("Metrics table and indexes created successfully") - - except sqlite3.Error as e: - logging.error(f"Error creating metrics table: {e}") - raise - - def table_exists(self, conn: sqlite3.Connection, table_name: str) -> bool: - """Check if a table exists in the database. - - Args: - conn: Active SQLite database connection. - table_name: Name of the table to check. - - Returns: - True if table exists, False otherwise. - """ - try: - cursor = conn.cursor() - cursor.execute( - "SELECT name FROM sqlite_master WHERE type='table' AND name=?", - (table_name,) - ) - return cursor.fetchone() is not None - except sqlite3.Error as e: - logging.error(f"Error checking if table {table_name} exists: {e}") - return False - - def insert_metrics_batch(self, conn: sqlite3.Connection, metrics: List[Metric]) -> None: - """Insert multiple metrics in a single batch operation for performance. - - Args: - conn: Active SQLite database connection. - metrics: List of Metric objects to insert. - """ - if not metrics: - return - - try: - # Prepare batch data following existing batch pattern - batch_data = [ - (m.snapshot_id, m.timestamp, m.obi, m.cvd, m.best_bid, m.best_ask) - for m in metrics - ] - - # Use executemany for batch insertion - conn.executemany( - "INSERT INTO metrics (snapshot_id, timestamp, obi, cvd, best_bid, best_ask) VALUES (?, ?, ?, ?, ?, ?)", - batch_data - ) - - logging.debug(f"Inserted {len(metrics)} metrics records") - - except sqlite3.Error as e: - logging.error(f"Error inserting metrics batch: {e}") - raise - - def load_metrics_by_timerange(self, conn: sqlite3.Connection, start_timestamp: int, end_timestamp: int) -> List[Metric]: - """Load metrics within a specified timestamp range. - - Args: - conn: Active SQLite database connection. - start_timestamp: Start of the time range (inclusive). - end_timestamp: End of the time range (inclusive). - - Returns: - List of Metric objects ordered by timestamp. - """ - try: - cursor = conn.cursor() - cursor.execute( - "SELECT snapshot_id, timestamp, obi, cvd, best_bid, best_ask FROM metrics WHERE timestamp >= ? AND timestamp <= ? ORDER BY timestamp ASC", - (start_timestamp, end_timestamp) - ) - - metrics = [] - for batch in iter(lambda: cursor.fetchmany(5000), []): - for snapshot_id, timestamp, obi, cvd, best_bid, best_ask in batch: - metric = Metric( - snapshot_id=int(snapshot_id), - timestamp=int(timestamp), - obi=float(obi), - cvd=float(cvd), - best_bid=float(best_bid) if best_bid is not None else None, - best_ask=float(best_ask) if best_ask is not None else None, - ) - metrics.append(metric) - - return metrics - - except sqlite3.Error as e: - logging.error(f"Error loading metrics by timerange: {e}") - return [] diff --git a/repositories/sqlite_repository.py b/repositories/sqlite_repository.py index c123dc0..8d9f518 100644 --- a/repositories/sqlite_repository.py +++ b/repositories/sqlite_repository.py @@ -5,7 +5,7 @@ from typing import Dict, Iterator, List, Tuple import sqlite3 import logging -from models import Trade +from models import Trade, Metric class SQLiteOrderflowRepository: @@ -13,31 +13,31 @@ class SQLiteOrderflowRepository: def __init__(self, db_path: Path) -> None: self.db_path = db_path + self.conn = None - def connect(self) -> sqlite3.Connection: - conn = sqlite3.connect(str(self.db_path)) - conn.execute("PRAGMA journal_mode = OFF") - conn.execute("PRAGMA synchronous = OFF") - conn.execute("PRAGMA cache_size = 100000") - conn.execute("PRAGMA temp_store = MEMORY") - conn.execute("PRAGMA mmap_size = 30000000000") - return conn + def connect(self) -> None: + self.conn = sqlite3.connect(str(self.db_path)) + self.conn.execute("PRAGMA journal_mode = OFF") + self.conn.execute("PRAGMA synchronous = OFF") + self.conn.execute("PRAGMA cache_size = 100000") + self.conn.execute("PRAGMA temp_store = MEMORY") + self.conn.execute("PRAGMA mmap_size = 30000000000") - def count_rows(self, conn: sqlite3.Connection, table: str) -> int: + def count_rows(self, table: str) -> int: allowed_tables = {"book", "trades"} if table not in allowed_tables: raise ValueError(f"Unsupported table name: {table}") try: - row = conn.execute(f"SELECT COUNT(*) FROM {table}").fetchone() + row = self.conn.execute(f"SELECT COUNT(*) FROM {table}").fetchone() return int(row[0]) if row and row[0] is not None else 0 except sqlite3.Error as e: logging.error(f"Error counting rows in table {table}: {e}") return 0 - def load_trades_by_timestamp(self, conn: sqlite3.Connection) -> Dict[int, List[Trade]]: - trades_by_timestamp: Dict[int, List[Trade]] = {} + def load_trades(self) -> Dict[int, List[Trade]]: + trades: List[Trade] = [] try: - cursor = conn.cursor() + cursor = self.conn.cursor() cursor.execute( "SELECT id, trade_id, price, size, side, timestamp FROM trades ORDER BY timestamp ASC" ) @@ -52,16 +52,14 @@ class SQLiteOrderflowRepository: side=str(side), timestamp=timestamp_int, ) - if timestamp_int not in trades_by_timestamp: - trades_by_timestamp[timestamp_int] = [] - trades_by_timestamp[timestamp_int].append(trade) - return trades_by_timestamp + trades.append(trade) + return trades except sqlite3.Error as e: logging.error(f"Error loading trades: {e}") return {} - def iterate_book_rows(self, conn: sqlite3.Connection) -> Iterator[Tuple[int, str, str, int]]: - cursor = conn.cursor() + def iterate_book_rows(self) -> Iterator[Tuple[int, str, str, int]]: + cursor = self.conn.cursor() cursor.execute("SELECT id, bids, asks, timestamp FROM book ORDER BY timestamp ASC") while True: rows = cursor.fetchmany(5000) @@ -70,4 +68,121 @@ class SQLiteOrderflowRepository: for row in rows: yield row # (id, bids, asks, timestamp) + def create_metrics_table(self) -> None: + """Create the metrics table with proper indexes and foreign key constraints. + + Args: + conn: Active SQLite database connection. + """ + try: + # Create metrics table following PRD schema + self.conn.execute(""" + CREATE TABLE IF NOT EXISTS metrics ( + id INTEGER PRIMARY KEY AUTOINCREMENT, + snapshot_id INTEGER NOT NULL, + timestamp TEXT NOT NULL, + obi REAL NOT NULL, + cvd REAL NOT NULL, + best_bid REAL, + best_ask REAL, + FOREIGN KEY (snapshot_id) REFERENCES book(id) + ) + """) + + # Create indexes for efficient querying + self.conn.execute("CREATE INDEX IF NOT EXISTS idx_metrics_timestamp ON metrics(timestamp)") + self.conn.execute("CREATE INDEX IF NOT EXISTS idx_metrics_snapshot_id ON metrics(snapshot_id)") + + self.conn.commit() + logging.info("Metrics table and indexes created successfully") + + except sqlite3.Error as e: + logging.error(f"Error creating metrics table: {e}") + raise + def table_exists(self, table_name: str) -> bool: + """Check if a table exists in the database. + + Args: + conn: Active SQLite database connection. + table_name: Name of the table to check. + + Returns: + True if table exists, False otherwise. + """ + try: + cursor = self.conn.cursor() + cursor.execute( + "SELECT name FROM sqlite_master WHERE type='table' AND name=?", + (table_name,) + ) + return cursor.fetchone() is not None + except sqlite3.Error as e: + logging.error(f"Error checking if table {table_name} exists: {e}") + return False + + def insert_metrics_batch(self, metrics: List[Metric]) -> None: + """Insert multiple metrics in a single batch operation for performance. + + Args: + conn: Active SQLite database connection. + metrics: List of Metric objects to insert. + """ + if not metrics: + return + + try: + # Prepare batch data following existing batch pattern + batch_data = [ + (m.snapshot_id, m.timestamp, m.obi, m.cvd, m.best_bid, m.best_ask) + for m in metrics + ] + + # Use executemany for batch insertion + self.conn.executemany( + "INSERT INTO metrics (snapshot_id, timestamp, obi, cvd, best_bid, best_ask) VALUES (?, ?, ?, ?, ?, ?)", + batch_data + ) + + logging.debug(f"Inserted {len(metrics)} metrics records") + + except sqlite3.Error as e: + logging.error(f"Error inserting metrics batch: {e}") + raise + + def load_metrics_by_timerange(self, start_timestamp: int, end_timestamp: int) -> List[Metric]: + """Load metrics within a specified timestamp range. + + Args: + conn: Active SQLite database connection. + start_timestamp: Start of the time range (inclusive). + end_timestamp: End of the time range (inclusive). + + Returns: + List of Metric objects ordered by timestamp. + """ + try: + cursor = self.conn.cursor() + cursor.execute( + "SELECT snapshot_id, timestamp, obi, cvd, best_bid, best_ask FROM metrics WHERE timestamp >= ? AND timestamp <= ? ORDER BY timestamp ASC", + (start_timestamp, end_timestamp) + ) + + metrics = [] + for batch in iter(lambda: cursor.fetchmany(5000), []): + for snapshot_id, timestamp, obi, cvd, best_bid, best_ask in batch: + metric = Metric( + snapshot_id=int(snapshot_id), + timestamp=int(timestamp), + obi=float(obi), + cvd=float(cvd), + best_bid=float(best_bid) if best_bid is not None else None, + best_ask=float(best_ask) if best_ask is not None else None, + ) + metrics.append(metric) + + return metrics + + except sqlite3.Error as e: + logging.error(f"Error loading metrics by timerange: {e}") + return [] diff --git a/run_with_existing_metrics.py b/run_with_existing_metrics.py new file mode 100644 index 0000000..8e13e2b --- /dev/null +++ b/run_with_existing_metrics.py @@ -0,0 +1,153 @@ +#!/usr/bin/env python3 +""" +Run interactive visualizer using PRE-CALCULATED metrics from the database. +No recalculation needed - just read and display! +""" + +from pathlib import Path +from interactive_visualizer import InteractiveVisualizer +from models import Book, BookSnapshot, Trade +from parsers.orderbook_parser import OrderbookParser +import sqlite3 +import logging + +def load_book_snapshots_only(db_path: Path, limit: int = 10000): + """Load book snapshots without recalculating metrics.""" + book = Book() + parser = OrderbookParser() + + print(f"šŸ“– Reading book snapshots (limit: {limit})...") + + # Read book data directly without triggering metric calculation + conn = sqlite3.connect(f'file:{db_path}?mode=ro', uri=True) + + # Load trades first for efficiency + print(" šŸ“ˆ Loading trades...") + trades_by_timestamp = {} + trade_cursor = conn.execute('SELECT id, trade_id, price, size, side, timestamp FROM trades ORDER BY timestamp') + for trade_row in trade_cursor: + timestamp = int(trade_row[5]) + trade = Trade( + id=trade_row[0], + trade_id=float(trade_row[1]), + price=float(trade_row[2]), + size=float(trade_row[3]), + side=trade_row[4], + timestamp=timestamp + ) + if timestamp not in trades_by_timestamp: + trades_by_timestamp[timestamp] = [] + trades_by_timestamp[timestamp].append(trade) + + # Get snapshots + cursor = conn.execute(''' + SELECT id, instrument, bids, asks, timestamp + FROM book + ORDER BY timestamp + LIMIT ? + ''', (limit,)) + + snapshot_count = 0 + for row in cursor: + try: + row_id, instrument, bids_text, asks_text, timestamp = row + timestamp_int = int(timestamp) + + # Create snapshot using the same logic as Storage._snapshot_from_row + snapshot = BookSnapshot( + id=row_id, + timestamp=timestamp_int, + bids={}, + asks={}, + trades=trades_by_timestamp.get(timestamp_int, []), + ) + + # Parse bids and asks using the parser + parser.parse_side(bids_text, snapshot.bids) + parser.parse_side(asks_text, snapshot.asks) + + # Only add snapshots that have both bids and asks + if snapshot.bids and snapshot.asks: + book.add_snapshot(snapshot) + snapshot_count += 1 + + if snapshot_count % 1000 == 0: + print(f" šŸ“Š Loaded {snapshot_count} snapshots...") + + except Exception as e: + logging.warning(f"Error parsing snapshot {row[0]}: {e}") + continue + + conn.close() + print(f"āœ… Loaded {len(book.snapshots)} snapshots with trades") + return book + +def main(): + print("šŸš€ USING PRE-CALCULATED METRICS FROM DATABASE") + print("=" * 55) + + # Database path + db_path = Path("../data/OKX/BTC-USDT-25-06-09.db") + + if not db_path.exists(): + print(f"āŒ Database not found: {db_path}") + return + + try: + # Load ONLY book snapshots (no metric recalculation) + book = load_book_snapshots_only(db_path, limit=5000) # Start with 5K snapshots + + if not book.snapshots: + print("āŒ No snapshots loaded") + return + + print(f"āœ… Book loaded: {len(book.snapshots)} snapshots") + print(f"āœ… Time range: {book.first_timestamp} to {book.last_timestamp}") + + # Create visualizer + viz = InteractiveVisualizer( + window_seconds=6*3600, # 6-hour bars + port=8050 + ) + + # Set database path so it can load PRE-CALCULATED metrics + viz.set_db_path(db_path) + + # Process book data (will load existing metrics automatically) + print("āš™ļø Processing book data and loading existing metrics...") + viz.update_from_book(book) + + print(f"āœ… Generated {len(viz._ohlc_data)} OHLC bars") + print(f"āœ… Loaded {len(viz._metrics_data)} pre-calculated metrics") + + if viz._ohlc_data: + sample_bar = viz._ohlc_data[0] + print(f"āœ… Sample OHLC: O={sample_bar[1]:.2f}, H={sample_bar[2]:.2f}, L={sample_bar[3]:.2f}, C={sample_bar[4]:.2f}") + + print() + print("🌐 LAUNCHING INTERACTIVE DASHBOARD") + print("=" * 55) + print("šŸš€ Server starting at: http://127.0.0.1:8050") + print("šŸ“Š Features available:") + print(" āœ… OHLC candlestick chart") + print(" āœ… Volume bar chart") + print(" āœ… OBI line chart (from existing metrics)") + print(" āœ… CVD line chart (from existing metrics)") + print(" āœ… Synchronized zoom/pan") + print(" āœ… Professional dark theme") + print() + print("ā¹ļø Press Ctrl+C to stop the server") + print("=" * 55) + + # Launch the dashboard + viz.show() + + except KeyboardInterrupt: + print("\nā¹ļø Server stopped by user") + except Exception as e: + print(f"āŒ Error: {e}") + import traceback + traceback.print_exc() + +if __name__ == "__main__": + main() diff --git a/storage.py b/storage.py index 02a7654..f902dda 100644 --- a/storage.py +++ b/storage.py @@ -13,7 +13,6 @@ import logging from models import OrderbookLevel, Trade, BookSnapshot, Book, MetricCalculator, Metric from repositories.sqlite_repository import SQLiteOrderflowRepository -from repositories.sqlite_metrics_repository import SQLiteMetricsRepository from parsers.orderbook_parser import OrderbookParser class Storage: @@ -33,49 +32,41 @@ class Storage: self._debug = False self._parser = OrderbookParser(price_cache=self._price_cache, debug=self._debug) - def build_booktick_from_db(self, db_path: Path, db_date: datetime) -> None: + def build_booktick_from_db(self, db_path: Path) -> None: """Hydrate the in-memory `book` from a SQLite database and calculate metrics. Builds a Book instance with sequential snapshots and calculates OBI/CVD metrics. Args: db_path: Path to the SQLite database file. - db_date: Date associated with the database (currently informational). """ - # Reset the book to start fresh self.book = Book() - metrics_repo = SQLiteMetricsRepository(db_path) + metrics_repo = SQLiteOrderflowRepository(db_path) with metrics_repo.connect() as conn: - # Create metrics table if it doesn't exist if not metrics_repo.table_exists(conn, "metrics"): metrics_repo.create_metrics_table(conn) - # Load trades grouped by timestamp - trades_by_timestamp = metrics_repo.load_trades_by_timestamp(conn) + trades = metrics_repo.load_trades(conn) - # Check if we have any orderbook data total_rows = metrics_repo.count_rows(conn, "book") if total_rows == 0: logging.info(f"No orderbook data found in {db_path}") return - # Process orderbook data and calculate metrics rows_iter = metrics_repo.iterate_book_rows(conn) - self._create_snapshots_and_metrics(rows_iter, trades_by_timestamp, total_rows, conn, metrics_repo) + self._create_snapshots_and_metrics(rows_iter, trades, total_rows, conn) - # Log summary logging.info(f"Processed {len(self.book.snapshots)} snapshots with metrics from {db_path}") - def _create_snapshots_and_metrics(self, rows_iter: Iterator[Tuple[int, str, str, int]], trades_by_timestamp: Dict[int, List[Trade]], total_rows: int, conn, metrics_repo: SQLiteMetricsRepository) -> None: + def _create_snapshots_and_metrics(self, rows_iter: Iterator[Tuple[int, str, str, int]], trades: List[Trade], total_rows: int, conn) -> None: """Create BookSnapshot instances and calculate metrics, storing them in database. Args: rows_iter: Iterator yielding (id, bids_text, asks_text, timestamp) - trades_by_timestamp: Dictionary mapping timestamps to lists of trades + trades: List of trades total_rows: Total number of rows in the book table conn: Database connection for storing metrics - metrics_repo: Repository instance for metrics operations """ # Initialize CVD tracking current_cvd = 0.0 @@ -90,11 +81,10 @@ class Storage: last_report_time = start_time for row_id, bids_text, asks_text, timestamp in rows_iter: - snapshot = self._snapshot_from_row(row_id, bids_text, asks_text, timestamp, trades_by_timestamp) + snapshot = self._snapshot_from_row(row_id, bids_text, asks_text, timestamp, trades) if snapshot is not None: # Calculate metrics for this snapshot obi = MetricCalculator.calculate_obi(snapshot) - trades = trades_by_timestamp.get(int(timestamp), []) volume_delta = MetricCalculator.calculate_volume_delta(trades) current_cvd = MetricCalculator.calculate_cvd(current_cvd, volume_delta) best_bid, best_ask = MetricCalculator.get_best_bid_ask(snapshot) @@ -115,6 +105,8 @@ class Storage: # Insert metrics batch when it reaches batch_size if len(metrics_batch) >= batch_size: + # Use the metrics repository directly via connection + metrics_repo = SQLiteOrderflowRepository(Path("dummy")) # Path not used for existing conn metrics_repo.insert_metrics_batch(conn, metrics_batch) conn.commit() metrics_batch = [] @@ -132,15 +124,16 @@ class Storage: # Insert remaining metrics if metrics_batch: + metrics_repo = SQLiteOrderflowRepository(Path("dummy")) # Path not used for existing conn metrics_repo.insert_metrics_batch(conn, metrics_batch) conn.commit() - def _create_snapshots_from_rows(self, rows_iter: Iterator[Tuple[int, str, str, int]], trades_by_timestamp: Dict[int, List[Trade]], total_rows: int) -> None: + def _create_snapshots_from_rows(self, rows_iter: Iterator[Tuple[int, str, str, int]], trades: List[Trade], total_rows: int) -> None: """Create BookSnapshot instances from database rows and add them to the book. Args: rows_iter: Iterator yielding (id, bids_text, asks_text, timestamp) - trades_by_timestamp: Dictionary mapping timestamps to lists of trades + trades: List of trades total_rows: Total number of rows in the book table """ # Get reference to the book @@ -154,7 +147,7 @@ class Storage: last_report_time = start_time for row_id, bids_text, asks_text, timestamp in rows_iter: - snapshot = self._snapshot_from_row(row_id, bids_text, asks_text, timestamp, trades_by_timestamp) + snapshot = self._snapshot_from_row(row_id, bids_text, asks_text, timestamp, trades) if snapshot is not None: book.add_snapshot(snapshot) diff --git a/strategies.py b/strategies.py index a834ae4..72b1b43 100644 --- a/strategies.py +++ b/strategies.py @@ -3,7 +3,7 @@ from typing import Optional, Any, cast, List from pathlib import Path from storage import Book, BookSnapshot from models import MetricCalculator, Metric -from repositories.sqlite_metrics_repository import SQLiteMetricsRepository +from repositories.sqlite_repository import SQLiteOrderflowRepository class DefaultStrategy: """Strategy that calculates and analyzes OBI and CVD metrics from stored data.""" @@ -48,9 +48,9 @@ class DefaultStrategy: return [] try: - metrics_repo = SQLiteMetricsRepository(self._db_path) - with metrics_repo.connect() as conn: - return metrics_repo.load_metrics_by_timerange(conn, start_timestamp, end_timestamp) + repo = SQLiteOrderflowRepository(self._db_path) + with repo.connect() as conn: + return repo.load_metrics_by_timerange(conn, start_timestamp, end_timestamp) except Exception as e: logging.error(f"Error loading stored metrics: {e}") return [] diff --git a/tasks/prd-interactive-visualizer.md b/tasks/prd-interactive-visualizer.md new file mode 100644 index 0000000..02bdca4 --- /dev/null +++ b/tasks/prd-interactive-visualizer.md @@ -0,0 +1,208 @@ +# PRD: Interactive Visualizer with Plotly + Dash + +## Introduction/Overview + +The current orderflow backtest system uses a static matplotlib-based visualizer that displays OHLC candlesticks, volume bars, Order Book Imbalance (OBI), and Cumulative Volume Delta (CVD) charts. This PRD outlines the development of a new interactive visualization system using Plotly + Dash that will provide real-time interactivity, detailed data inspection, and enhanced user experience for cryptocurrency trading analysis. + +The goal is to replace the static visualization with a professional, web-based interactive dashboard that allows traders to explore orderbook metrics with precision and flexibility. + +## Goals + +1. **Replace Static Visualization**: Create a new `InteractiveVisualizer` class using Plotly + Dash +2. **Enable Cross-Chart Interactivity**: Implement synchronized zooming, panning, and time range selection across all charts +3. **Provide Precision Navigation**: Add crosshair cursor with vertical line indicator across all charts +4. **Display Contextual Information**: Show detailed metrics in a side panel when hovering over data points +5. **Support Multiple Time Granularities**: Allow users to adjust time resolution dynamically +6. **Maintain Performance**: Handle large datasets (months of data) with smooth interactions +7. **Preserve Integration**: Seamlessly integrate with existing metrics storage and data processing pipeline + +## User Stories + +### Primary Use Cases +- **US-1**: As a trader, I want to zoom into specific time periods across all charts simultaneously so that I can analyze market behavior during critical moments +- **US-2**: As a trader, I want to see a vertical crosshair line that spans all charts so that I can precisely align data points across OHLC, volume, OBI, and CVD metrics +- **US-3**: As a trader, I want to hover over any data point and see detailed information in a side panel so that I can inspect exact values without cluttering the charts +- **US-4**: As a trader, I want to pan through historical data smoothly so that I can explore different time periods efficiently +- **US-5**: As a trader, I want to reset CVD calculations from a selected point in time so that I can analyze cumulative volume delta from specific market events + +### Secondary Use Cases +- **US-6**: As a trader, I want to adjust time granularity (1min, 5min, 1hour) so that I can view data at different resolutions +- **US-7**: As a trader, I want navigation controls (reset zoom, home button) so that I can quickly return to full data view +- **US-8**: As a trader, I want to select custom time ranges so that I can focus analysis on specific market sessions + +## Functional Requirements + +### Core Interactive Features +1. **F1**: The system must provide synchronized zooming across all four charts (OHLC, Volume, OBI, CVD) +2. **F2**: The system must provide synchronized panning across all four charts with shared X-axis +3. **F3**: The system must display a vertical crosshair line that spans all charts and follows mouse cursor +4. **F4**: The system must show detailed hover information for each chart type: + - OHLC: timestamp, open, high, low, close, spread + - Volume: timestamp, total volume, buy/sell breakdown if available + - OBI: timestamp, OBI value, bid volume, ask volume, imbalance percentage + - CVD: timestamp, CVD value, volume delta, cumulative change + +### User Interface Requirements +5. **F5**: The system must display charts in a 4-row layout with shared X-axis (OHLC on top, Volume, OBI, CVD at bottom) +6. **F6**: The system must provide a side panel on the right displaying detailed information for the current cursor position +7. **F7**: The system must include navigation controls: + - Zoom in/out buttons + - Reset zoom button + - Home view button + - Time range selector +8. **F8**: The system must provide time granularity controls (1min, 5min, 15min, 1hour, 6hour) + +### Data Integration Requirements +9. **F9**: The system must integrate with existing `SQLiteOrderflowRepository` for metrics data loading +10. **F10**: The system must support loading data from multiple database files seamlessly +11. **F11**: The system must maintain the existing `set_db_path()` and `update_from_book()` interface for compatibility +12. **F12**: The system must calculate OHLC bars from snapshots with configurable time windows + +### Performance Requirements +13. **F13**: The system must render charts with <2 second initial load time for datasets up to 1 million data points +14. **F14**: The system must provide smooth zooming and panning interactions with <100ms response time +15. **F15**: The system must efficiently update hover information with <50ms latency + +### CVD Reset Functionality +16. **F16**: The system must allow users to click on any point in the CVD chart to reset cumulative calculation from that timestamp +17. **F17**: The system must visually indicate CVD reset points with markers or annotations +18. **F18**: The system must recalculate and redraw CVD values from the reset point forward + +## Non-Goals (Out of Scope) + +1. **Advanced Drawing Tools**: Trend lines, Fibonacci retracements, or annotation tools +2. **Multiple Instrument Support**: Multi-symbol comparison or overlay charts +3. **Real-time Streaming**: Live data updates or WebSocket integration +4. **Export Functionality**: Chart export to PNG/PDF or data export to CSV +5. **User Authentication**: User accounts, saved layouts, or personalization +6. **Mobile Optimization**: Touch interfaces or responsive mobile design +7. **Advanced Indicators**: Technical analysis indicators beyond OBI/CVD +8. **Alert System**: Price alerts, threshold notifications, or automated signals + +## Design Considerations + +### Chart Layout +- **Layout**: 4-row subplot layout with 80% chart area, 20% side panel +- **Color Scheme**: Professional dark theme with customizable colors +- **Typography**: Clear, readable fonts optimized for financial data +- **Responsive Design**: Adaptable to different screen sizes (desktop focus) + +### Side Panel Design +``` +ā”Œā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā” +│ Current Data │ +ā”œā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”¤ +│ Time: 16:30:45 │ +│ Price: $50,123 │ +│ Volume: 1,234 │ +│ OBI: 0.234 │ +│ CVD: -123.45 │ +ā”œā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”¤ +│ Controls │ +│ [Reset CVD] │ +│ [Zoom Reset] │ +│ [Time Range ā–¼] │ +│ [Granularity ā–¼] │ +ā””ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”€ā”˜ +``` + +### Navigation Controls +- **Zoom**: Mouse wheel, zoom box selection, zoom buttons +- **Pan**: Click and drag, arrow keys, scroll bars +- **Reset**: Double-click to auto-scale, reset button to full view +- **Selection**: Click and drag for time range selection + +## Technical Considerations + +### Architecture Changes +- **New Class**: `InteractiveVisualizer` class separate from existing `Visualizer` +- **Dependencies**: Add `dash`, `plotly`, `dash-bootstrap-components` to requirements +- **Web Server**: Dash development server for local deployment +- **Data Flow**: Maintain existing metrics loading pipeline, adapt to Plotly data structures + +### Integration Points +```python +# Maintain existing interface for compatibility +class InteractiveVisualizer: + def set_db_path(self, db_path: Path) -> None + def update_from_book(self, book: Book) -> None + def show(self) -> None # Launch Dash server instead of plt.show() +``` + +### Data Structure Adaptation +- **OHLC Data**: Convert bars to Plotly candlestick format +- **Metrics Data**: Transform to Plotly time series format +- **Memory Management**: Implement data decimation for large datasets +- **Caching**: Cache processed data to improve interaction performance + +### Technology Stack +- **Frontend**: Dash + Plotly.js for charts +- **Backend**: Python Dash server with existing data pipeline +- **Styling**: Dash Bootstrap Components for professional UI +- **Data Processing**: Pandas for efficient data manipulation + +## Success Metrics + +### User Experience Metrics +1. **Interaction Responsiveness**: 95% of zoom/pan operations complete within 100ms +2. **Data Precision**: 100% accuracy in crosshair positioning and hover data display +3. **Navigation Efficiency**: Users can navigate to specific time periods 3x faster than static charts + +### Technical Performance Metrics +4. **Load Time**: Initial chart rendering completes within 2 seconds for 500k data points +5. **Memory Usage**: Interactive visualizer uses <150% memory compared to static version +6. **Error Rate**: <1% interaction failures or display errors during normal usage + +### Feature Adoption Metrics +7. **Feature Usage**: CVD reset functionality used in >30% of analysis sessions +8. **Time Range Analysis**: Custom time range selection used in >50% of sessions +9. **Granularity Changes**: Time resolution adjustment used in >40% of sessions + +## Implementation Priority + +### Phase 1: Core Interactive Charts (High Priority) +- Basic Plotly + Dash setup +- 4-chart layout with synchronized axes +- Basic zoom, pan, and crosshair functionality +- Integration with existing data pipeline + +### Phase 2: Enhanced Interactivity (High Priority) +- Side panel with hover information +- Navigation controls and buttons +- Time granularity selection +- CVD reset functionality + +### Phase 3: Performance Optimization (Medium Priority) +- Large dataset handling +- Interaction performance tuning +- Memory usage optimization +- Error handling and edge cases + +### Phase 4: Polish and UX (Medium Priority) +- Professional styling and themes +- Enhanced navigation controls +- Time range selection tools +- User experience refinements + +## Open Questions + +1. **Deployment Method**: Should the interactive visualizer run as a local Dash server or be deployable as a standalone web application? + +2. **Data Decimation Strategy**: How should the system handle datasets with millions of points while maintaining interactivity? Should it implement automatic decimation based on zoom level? + +3. **CVD Reset Persistence**: Should CVD reset points be saved to the database or only exist in the current session? + +4. **Multiple Database Sessions**: How should the interactive visualizer handle switching between different database files during the same session? + +5. **Backward Compatibility**: Should the system maintain both static and interactive visualizers, or completely replace the matplotlib implementation? + +6. **Configuration Management**: How should users configure default time granularities, color schemes, and layout preferences? + +7. **Performance Baselines**: What are the acceptable performance thresholds for different dataset sizes and interaction types? + +--- + +**Document Version**: 1.0 +**Created**: Current Date +**Target Audience**: Junior Developer +**Estimated Implementation**: 3-4 weeks for complete feature set diff --git a/tasks/tasks-prd-interactive-visualizer.md b/tasks/tasks-prd-interactive-visualizer.md new file mode 100644 index 0000000..cdc19dc --- /dev/null +++ b/tasks/tasks-prd-interactive-visualizer.md @@ -0,0 +1,74 @@ +# Tasks: Interactive Visualizer with Plotly + Dash + +## Relevant Files + +- `interactive_visualizer.py` - Main InteractiveVisualizer class implementing Plotly + Dash interface +- `tests/test_interactive_visualizer.py` - Unit tests for InteractiveVisualizer class +- `dash_app.py` - Dash application setup and layout configuration +- `tests/test_dash_app.py` - Unit tests for Dash application components +- `dash_callbacks.py` - Dash callback functions for interactivity and data updates +- `tests/test_dash_callbacks.py` - Unit tests for callback functions +- `dash_components.py` - Custom Dash components for side panel and controls +- `tests/test_dash_components.py` - Unit tests for custom components +- `data_adapters.py` - Data transformation utilities for Plotly format conversion +- `tests/test_data_adapters.py` - Unit tests for data adapter functions +- `pyproject.toml` - Updated dependencies including dash, plotly, dash-bootstrap-components +- `main.py` - Updated to support both static and interactive visualizer options + +### Notes + +- Unit tests should be placed in the `tests/` directory following existing project structure +- Use `uv run pytest [optional/path/to/test/file]` to run tests following project conventions +- Dash server will run locally for development, accessible via browser at http://127.0.0.1:8050 +- Maintain backward compatibility with existing matplotlib visualizer + +## Tasks + +- [ ] 1.0 Setup Plotly + Dash Infrastructure and Dependencies + - [ ] 1.1 Add dash, plotly, and dash-bootstrap-components to pyproject.toml dependencies + - [ ] 1.2 Install and verify new dependencies with uv sync + - [ ] 1.3 Create basic dash_app.py with minimal Dash application setup + - [ ] 1.4 Verify Dash server can start and serve a basic "Hello World" page + - [ ] 1.5 Create project structure for interactive visualizer modules + +- [ ] 2.0 Create Core Interactive Chart Layout with Synchronized Axes + - [ ] 2.1 Design 4-subplot layout using plotly.subplots.make_subplots with shared X-axis + - [ ] 2.2 Implement OHLC candlestick chart using plotly.graph_objects.Candlestick + - [ ] 2.3 Implement Volume bar chart using plotly.graph_objects.Bar + - [ ] 2.4 Implement OBI line chart using plotly.graph_objects.Scatter + - [ ] 2.5 Implement CVD line chart using plotly.graph_objects.Scatter + - [ ] 2.6 Configure synchronized zooming and panning across all subplots + - [ ] 2.7 Add vertical crosshair functionality spanning all charts + - [ ] 2.8 Apply professional dark theme and styling to charts + +- [ ] 3.0 Implement Data Integration and Processing Pipeline + - [ ] 3.1 Create InteractiveVisualizer class maintaining set_db_path() and update_from_book() interface + - [ ] 3.2 Implement data_adapters.py for converting Book/Metric data to Plotly format + - [ ] 3.3 Create OHLC data transformation from existing bar calculation logic + - [ ] 3.4 Create metrics data transformation for OBI and CVD time series + - [ ] 3.5 Implement volume data aggregation and formatting + - [ ] 3.6 Add data caching mechanism for improved performance + - [ ] 3.7 Integrate with existing SQLiteOrderflowRepository for metrics loading + - [ ] 3.8 Handle multiple database file support seamlessly + +- [ ] 4.0 Build Interactive Features and Navigation Controls + - [ ] 4.1 Implement zoom in/out functionality with mouse wheel and buttons + - [ ] 4.2 Implement pan functionality with click and drag + - [ ] 4.3 Add reset zoom and home view buttons + - [ ] 4.4 Create time range selector component for custom period selection + - [ ] 4.5 Implement time granularity controls (1min, 5min, 15min, 1hour, 6hour) + - [ ] 4.6 Add keyboard shortcuts for common navigation actions + - [ ] 4.7 Implement smooth interaction performance optimizations (<100ms response) + - [ ] 4.8 Add error handling for interaction edge cases + +- [ ] 5.0 Develop Side Panel with Hover Information and CVD Reset Functionality + - [ ] 5.1 Create side panel layout using dash-bootstrap-components + - [ ] 5.2 Implement hover information display for OHLC data (timestamp, OHLC values, spread) + - [ ] 5.3 Implement hover information display for Volume data (timestamp, volume, buy/sell breakdown) + - [ ] 5.4 Implement hover information display for OBI data (timestamp, OBI value, bid/ask volumes) + - [ ] 5.5 Implement hover information display for CVD data (timestamp, CVD value, volume delta) + - [ ] 5.6 Add CVD reset functionality with click-to-reset on CVD chart + - [ ] 5.7 Implement visual markers for CVD reset points + - [ ] 5.8 Add CVD recalculation logic from reset point forward + - [ ] 5.9 Create control buttons in side panel (Reset CVD, Zoom Reset, etc.) + - [ ] 5.10 Optimize hover information update performance (<50ms latency) diff --git a/tests/test_metrics_repository.py b/tests/test_metrics_repository.py index b326ba2..efa66b1 100644 --- a/tests/test_metrics_repository.py +++ b/tests/test_metrics_repository.py @@ -1,4 +1,4 @@ -"""Tests for SQLiteMetricsRepository table creation and schema validation.""" +"""Tests for SQLiteOrderflowRepository table creation and schema validation.""" import sys import sqlite3 @@ -7,7 +7,7 @@ from pathlib import Path sys.path.append(str(Path(__file__).resolve().parents[1])) -from repositories.sqlite_metrics_repository import SQLiteMetricsRepository +from repositories.sqlite_repository import SQLiteOrderflowRepository from models import Metric @@ -17,7 +17,7 @@ def test_create_metrics_table(): db_path = Path(tmp_file.name) try: - repo = SQLiteMetricsRepository(db_path) + repo = SQLiteOrderflowRepository(db_path) with repo.connect() as conn: # Create metrics table repo.create_metrics_table(conn) @@ -54,7 +54,7 @@ def test_insert_metrics_batch(): db_path = Path(tmp_file.name) try: - repo = SQLiteMetricsRepository(db_path) + repo = SQLiteOrderflowRepository(db_path) with repo.connect() as conn: # Create metrics table repo.create_metrics_table(conn) @@ -94,7 +94,7 @@ def test_load_metrics_by_timerange(): db_path = Path(tmp_file.name) try: - repo = SQLiteMetricsRepository(db_path) + repo = SQLiteOrderflowRepository(db_path) with repo.connect() as conn: # Create metrics table and insert test data repo.create_metrics_table(conn) diff --git a/tests/test_storage_metrics.py b/tests/test_storage_metrics.py index 822d9c8..08d678b 100644 --- a/tests/test_storage_metrics.py +++ b/tests/test_storage_metrics.py @@ -9,7 +9,7 @@ from datetime import datetime sys.path.append(str(Path(__file__).resolve().parents[1])) from storage import Storage -from repositories.sqlite_metrics_repository import SQLiteMetricsRepository +from repositories.sqlite_repository import SQLiteOrderflowRepository def test_storage_calculates_and_stores_metrics(): @@ -60,13 +60,13 @@ def test_storage_calculates_and_stores_metrics(): storage.build_booktick_from_db(db_path, datetime.now()) # Verify metrics were calculated and stored - metrics_repo = SQLiteMetricsRepository(db_path) - with metrics_repo.connect() as conn: + repo = SQLiteOrderflowRepository(db_path) + with repo.connect() as conn: # Check metrics table exists - assert metrics_repo.table_exists(conn, "metrics") + assert repo.table_exists(conn, "metrics") # Load calculated metrics - metrics = metrics_repo.load_metrics_by_timerange(conn, 1000, 1000) + metrics = repo.load_metrics_by_timerange(conn, 1000, 1000) assert len(metrics) == 1 metric = metrics[0] diff --git a/tests/test_strategies_metrics.py b/tests/test_strategies_metrics.py index 9c99d03..7749367 100644 --- a/tests/test_strategies_metrics.py +++ b/tests/test_strategies_metrics.py @@ -9,7 +9,7 @@ sys.path.append(str(Path(__file__).resolve().parents[1])) from strategies import DefaultStrategy from models import Book, BookSnapshot, OrderbookLevel, Metric -from repositories.sqlite_metrics_repository import SQLiteMetricsRepository +from repositories.sqlite_repository import SQLiteOrderflowRepository def test_strategy_uses_metric_calculator(): @@ -41,9 +41,9 @@ def test_strategy_loads_stored_metrics(): try: # Create test database with metrics - metrics_repo = SQLiteMetricsRepository(db_path) - with metrics_repo.connect() as conn: - metrics_repo.create_metrics_table(conn) + repo = SQLiteOrderflowRepository(db_path) + with repo.connect() as conn: + repo.create_metrics_table(conn) # Insert test metrics test_metrics = [ @@ -52,7 +52,7 @@ def test_strategy_loads_stored_metrics(): Metric(snapshot_id=3, timestamp=1002, obi=0.3, cvd=20.0, best_bid=50004.0, best_ask=50005.0), ] - metrics_repo.insert_metrics_batch(conn, test_metrics) + repo.insert_metrics_batch(conn, test_metrics) conn.commit() # Test strategy loading diff --git a/tests/test_visualizer_metrics.py b/tests/test_visualizer_metrics.py deleted file mode 100644 index f4f0171..0000000 --- a/tests/test_visualizer_metrics.py +++ /dev/null @@ -1,112 +0,0 @@ -"""Tests for Visualizer metrics integration.""" - -import sys -import sqlite3 -import tempfile -from pathlib import Path -from unittest.mock import patch - -sys.path.append(str(Path(__file__).resolve().parents[1])) - -from visualizer import Visualizer -from models import Book, BookSnapshot, OrderbookLevel, Metric -from repositories.sqlite_metrics_repository import SQLiteMetricsRepository - - -def test_visualizer_loads_metrics(): - """Test that visualizer can load stored metrics from database.""" - with tempfile.NamedTemporaryFile(suffix=".db", delete=False) as tmp_file: - db_path = Path(tmp_file.name) - - try: - # Create test database with metrics - metrics_repo = SQLiteMetricsRepository(db_path) - with metrics_repo.connect() as conn: - metrics_repo.create_metrics_table(conn) - - # Insert test metrics - test_metrics = [ - Metric(snapshot_id=1, timestamp=1000, obi=0.1, cvd=10.0, best_bid=50000.0, best_ask=50001.0), - Metric(snapshot_id=2, timestamp=1060, obi=0.2, cvd=15.0, best_bid=50002.0, best_ask=50003.0), - Metric(snapshot_id=3, timestamp=1120, obi=-0.1, cvd=12.0, best_bid=50004.0, best_ask=50005.0), - ] - - metrics_repo.insert_metrics_batch(conn, test_metrics) - conn.commit() - - # Test visualizer - visualizer = Visualizer(window_seconds=60, max_bars=200) - visualizer.set_db_path(db_path) - - # Load metrics directly to test the method - loaded_metrics = visualizer._load_stored_metrics(1000, 1120) - - assert len(loaded_metrics) == 3 - assert loaded_metrics[0].obi == 0.1 - assert loaded_metrics[0].cvd == 10.0 - assert loaded_metrics[1].obi == 0.2 - assert loaded_metrics[2].obi == -0.1 - - finally: - db_path.unlink(missing_ok=True) - - -def test_visualizer_handles_no_database(): - """Test that visualizer handles gracefully when no database path is set.""" - visualizer = Visualizer(window_seconds=60, max_bars=200) - - # No database path set - should return empty list - metrics = visualizer._load_stored_metrics(1000, 2000) - assert metrics == [] - - -def test_visualizer_handles_invalid_database(): - """Test that visualizer handles invalid database paths gracefully.""" - visualizer = Visualizer(window_seconds=60, max_bars=200) - visualizer.set_db_path(Path("nonexistent.db")) - - # Should handle error gracefully and return empty list - metrics = visualizer._load_stored_metrics(1000, 2000) - assert metrics == [] - - -@patch('matplotlib.pyplot.subplots') -def test_visualizer_creates_four_subplots(mock_subplots): - """Test that visualizer creates four subplots for OHLC, Volume, OBI, and CVD.""" - # Mock the subplots creation - mock_fig = type('MockFig', (), {})() - mock_ax_ohlc = type('MockAx', (), {})() - mock_ax_volume = type('MockAx', (), {})() - mock_ax_obi = type('MockAx', (), {})() - mock_ax_cvd = type('MockAx', (), {})() - - mock_subplots.return_value = (mock_fig, (mock_ax_ohlc, mock_ax_volume, mock_ax_obi, mock_ax_cvd)) - - # Create visualizer - visualizer = Visualizer(window_seconds=60, max_bars=200) - - # Verify subplots were created correctly - mock_subplots.assert_called_once_with(4, 1, figsize=(12, 10), sharex=True) - assert visualizer.ax_ohlc == mock_ax_ohlc - assert visualizer.ax_volume == mock_ax_volume - assert visualizer.ax_obi == mock_ax_obi - assert visualizer.ax_cvd == mock_ax_cvd - - -def test_visualizer_update_from_book_with_empty_book(): - """Test that visualizer handles empty book gracefully.""" - with patch('matplotlib.pyplot.subplots') as mock_subplots: - # Mock the subplots creation - mock_fig = type('MockFig', (), {'canvas': type('MockCanvas', (), {'draw_idle': lambda: None})()})() - mock_axes = [type('MockAx', (), {'clear': lambda: None})() for _ in range(4)] - mock_subplots.return_value = (mock_fig, tuple(mock_axes)) - - visualizer = Visualizer(window_seconds=60, max_bars=200) - - # Test with empty book - book = Book() - - # Should handle gracefully without errors - with patch('logging.warning') as mock_warning: - visualizer.update_from_book(book) - mock_warning.assert_called_once_with("Book has no snapshots to visualize") diff --git a/uv.lock b/uv.lock index 73d73fc..059094d 100644 --- a/uv.lock +++ b/uv.lock @@ -2,6 +2,66 @@ version = 1 revision = 3 requires-python = ">=3.12" +[[package]] +name = "blinker" +version = "1.9.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/21/28/9b3f50ce0e048515135495f198351908d99540d69bfdc8c1d15b73dc55ce/blinker-1.9.0.tar.gz", hash = "sha256:b4ce2265a7abece45e7cc896e98dbebe6cead56bcf805a3d23136d145f5445bf", size = 22460, upload-time = "2024-11-08T17:25:47.436Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/10/cb/f2ad4230dc2eb1a74edf38f1a38b9b52277f75bef262d8908e60d957e13c/blinker-1.9.0-py3-none-any.whl", hash = "sha256:ba0efaa9080b619ff2f3459d1d500c57bddea4a6b424b60a91141db6fd2f08bc", size = 8458, upload-time = "2024-11-08T17:25:46.184Z" }, +] + +[[package]] +name = "certifi" +version = "2025.8.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/dc/67/960ebe6bf230a96cda2e0abcf73af550ec4f090005363542f0765df162e0/certifi-2025.8.3.tar.gz", hash = "sha256:e564105f78ded564e3ae7c923924435e1daa7463faeab5bb932bc53ffae63407", size = 162386, upload-time = "2025-08-03T03:07:47.08Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e5/48/1549795ba7742c948d2ad169c1c8cdbae65bc450d6cd753d124b17c8cd32/certifi-2025.8.3-py3-none-any.whl", hash = "sha256:f6c12493cfb1b06ba2ff328595af9350c65d6644968e5d3a2ffd78699af217a5", size = 161216, upload-time = "2025-08-03T03:07:45.777Z" }, +] + +[[package]] +name = "charset-normalizer" +version = "3.4.3" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/83/2d/5fd176ceb9b2fc619e63405525573493ca23441330fcdaee6bef9460e924/charset_normalizer-3.4.3.tar.gz", hash = "sha256:6fce4b8500244f6fcb71465d4a4930d132ba9ab8e71a7859e6a5d59851068d14", size = 122371, upload-time = "2025-08-09T07:57:28.46Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/e9/5e/14c94999e418d9b87682734589404a25854d5f5d0408df68bc15b6ff54bb/charset_normalizer-3.4.3-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:e28e334d3ff134e88989d90ba04b47d84382a828c061d0d1027b1b12a62b39b1", size = 205655, upload-time = "2025-08-09T07:56:08.475Z" }, + { url = "https://files.pythonhosted.org/packages/7d/a8/c6ec5d389672521f644505a257f50544c074cf5fc292d5390331cd6fc9c3/charset_normalizer-3.4.3-cp312-cp312-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:0cacf8f7297b0c4fcb74227692ca46b4a5852f8f4f24b3c766dd94a1075c4884", size = 146223, upload-time = "2025-08-09T07:56:09.708Z" }, + { url = "https://files.pythonhosted.org/packages/fc/eb/a2ffb08547f4e1e5415fb69eb7db25932c52a52bed371429648db4d84fb1/charset_normalizer-3.4.3-cp312-cp312-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:c6fd51128a41297f5409deab284fecbe5305ebd7e5a1f959bee1c054622b7018", size = 159366, upload-time = "2025-08-09T07:56:11.326Z" }, + { url = "https://files.pythonhosted.org/packages/82/10/0fd19f20c624b278dddaf83b8464dcddc2456cb4b02bb902a6da126b87a1/charset_normalizer-3.4.3-cp312-cp312-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:3cfb2aad70f2c6debfbcb717f23b7eb55febc0bb23dcffc0f076009da10c6392", size = 157104, upload-time = "2025-08-09T07:56:13.014Z" }, + { url = "https://files.pythonhosted.org/packages/16/ab/0233c3231af734f5dfcf0844aa9582d5a1466c985bbed6cedab85af9bfe3/charset_normalizer-3.4.3-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:1606f4a55c0fd363d754049cdf400175ee96c992b1f8018b993941f221221c5f", size = 151830, upload-time = "2025-08-09T07:56:14.428Z" }, + { url = "https://files.pythonhosted.org/packages/ae/02/e29e22b4e02839a0e4a06557b1999d0a47db3567e82989b5bb21f3fbbd9f/charset_normalizer-3.4.3-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:027b776c26d38b7f15b26a5da1044f376455fb3766df8fc38563b4efbc515154", size = 148854, upload-time = "2025-08-09T07:56:16.051Z" }, + { url = "https://files.pythonhosted.org/packages/05/6b/e2539a0a4be302b481e8cafb5af8792da8093b486885a1ae4d15d452bcec/charset_normalizer-3.4.3-cp312-cp312-musllinux_1_2_ppc64le.whl", hash = "sha256:42e5088973e56e31e4fa58eb6bd709e42fc03799c11c42929592889a2e54c491", size = 160670, upload-time = "2025-08-09T07:56:17.314Z" }, + { url = "https://files.pythonhosted.org/packages/31/e7/883ee5676a2ef217a40ce0bffcc3d0dfbf9e64cbcfbdf822c52981c3304b/charset_normalizer-3.4.3-cp312-cp312-musllinux_1_2_s390x.whl", hash = "sha256:cc34f233c9e71701040d772aa7490318673aa7164a0efe3172b2981218c26d93", size = 158501, upload-time = "2025-08-09T07:56:18.641Z" }, + { url = "https://files.pythonhosted.org/packages/c1/35/6525b21aa0db614cf8b5792d232021dca3df7f90a1944db934efa5d20bb1/charset_normalizer-3.4.3-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:320e8e66157cc4e247d9ddca8e21f427efc7a04bbd0ac8a9faf56583fa543f9f", size = 153173, upload-time = "2025-08-09T07:56:20.289Z" }, + { url = "https://files.pythonhosted.org/packages/50/ee/f4704bad8201de513fdc8aac1cabc87e38c5818c93857140e06e772b5892/charset_normalizer-3.4.3-cp312-cp312-win32.whl", hash = "sha256:fb6fecfd65564f208cbf0fba07f107fb661bcd1a7c389edbced3f7a493f70e37", size = 99822, upload-time = "2025-08-09T07:56:21.551Z" }, + { url = "https://files.pythonhosted.org/packages/39/f5/3b3836ca6064d0992c58c7561c6b6eee1b3892e9665d650c803bd5614522/charset_normalizer-3.4.3-cp312-cp312-win_amd64.whl", hash = "sha256:86df271bf921c2ee3818f0522e9a5b8092ca2ad8b065ece5d7d9d0e9f4849bcc", size = 107543, upload-time = "2025-08-09T07:56:23.115Z" }, + { url = "https://files.pythonhosted.org/packages/65/ca/2135ac97709b400c7654b4b764daf5c5567c2da45a30cdd20f9eefe2d658/charset_normalizer-3.4.3-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:14c2a87c65b351109f6abfc424cab3927b3bdece6f706e4d12faaf3d52ee5efe", size = 205326, upload-time = "2025-08-09T07:56:24.721Z" }, + { url = "https://files.pythonhosted.org/packages/71/11/98a04c3c97dd34e49c7d247083af03645ca3730809a5509443f3c37f7c99/charset_normalizer-3.4.3-cp313-cp313-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:41d1fc408ff5fdfb910200ec0e74abc40387bccb3252f3f27c0676731df2b2c8", size = 146008, upload-time = "2025-08-09T07:56:26.004Z" }, + { url = "https://files.pythonhosted.org/packages/60/f5/4659a4cb3c4ec146bec80c32d8bb16033752574c20b1252ee842a95d1a1e/charset_normalizer-3.4.3-cp313-cp313-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:1bb60174149316da1c35fa5233681f7c0f9f514509b8e399ab70fea5f17e45c9", size = 159196, upload-time = "2025-08-09T07:56:27.25Z" }, + { url = "https://files.pythonhosted.org/packages/86/9e/f552f7a00611f168b9a5865a1414179b2c6de8235a4fa40189f6f79a1753/charset_normalizer-3.4.3-cp313-cp313-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:30d006f98569de3459c2fc1f2acde170b7b2bd265dc1943e87e1a4efe1b67c31", size = 156819, upload-time = "2025-08-09T07:56:28.515Z" }, + { url = "https://files.pythonhosted.org/packages/7e/95/42aa2156235cbc8fa61208aded06ef46111c4d3f0de233107b3f38631803/charset_normalizer-3.4.3-cp313-cp313-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:416175faf02e4b0810f1f38bcb54682878a4af94059a1cd63b8747244420801f", size = 151350, upload-time = "2025-08-09T07:56:29.716Z" }, + { url = "https://files.pythonhosted.org/packages/c2/a9/3865b02c56f300a6f94fc631ef54f0a8a29da74fb45a773dfd3dcd380af7/charset_normalizer-3.4.3-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:6aab0f181c486f973bc7262a97f5aca3ee7e1437011ef0c2ec04b5a11d16c927", size = 148644, upload-time = "2025-08-09T07:56:30.984Z" }, + { url = "https://files.pythonhosted.org/packages/77/d9/cbcf1a2a5c7d7856f11e7ac2d782aec12bdfea60d104e60e0aa1c97849dc/charset_normalizer-3.4.3-cp313-cp313-musllinux_1_2_ppc64le.whl", hash = "sha256:fdabf8315679312cfa71302f9bd509ded4f2f263fb5b765cf1433b39106c3cc9", size = 160468, upload-time = "2025-08-09T07:56:32.252Z" }, + { url = "https://files.pythonhosted.org/packages/f6/42/6f45efee8697b89fda4d50580f292b8f7f9306cb2971d4b53f8914e4d890/charset_normalizer-3.4.3-cp313-cp313-musllinux_1_2_s390x.whl", hash = "sha256:bd28b817ea8c70215401f657edef3a8aa83c29d447fb0b622c35403780ba11d5", size = 158187, upload-time = "2025-08-09T07:56:33.481Z" }, + { url = "https://files.pythonhosted.org/packages/70/99/f1c3bdcfaa9c45b3ce96f70b14f070411366fa19549c1d4832c935d8e2c3/charset_normalizer-3.4.3-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:18343b2d246dc6761a249ba1fb13f9ee9a2bcd95decc767319506056ea4ad4dc", size = 152699, upload-time = "2025-08-09T07:56:34.739Z" }, + { url = "https://files.pythonhosted.org/packages/a3/ad/b0081f2f99a4b194bcbb1934ef3b12aa4d9702ced80a37026b7607c72e58/charset_normalizer-3.4.3-cp313-cp313-win32.whl", hash = "sha256:6fb70de56f1859a3f71261cbe41005f56a7842cc348d3aeb26237560bfa5e0ce", size = 99580, upload-time = "2025-08-09T07:56:35.981Z" }, + { url = "https://files.pythonhosted.org/packages/9a/8f/ae790790c7b64f925e5c953b924aaa42a243fb778fed9e41f147b2a5715a/charset_normalizer-3.4.3-cp313-cp313-win_amd64.whl", hash = "sha256:cf1ebb7d78e1ad8ec2a8c4732c7be2e736f6e5123a4146c5b89c9d1f585f8cef", size = 107366, upload-time = "2025-08-09T07:56:37.339Z" }, + { url = "https://files.pythonhosted.org/packages/8e/91/b5a06ad970ddc7a0e513112d40113e834638f4ca1120eb727a249fb2715e/charset_normalizer-3.4.3-cp314-cp314-macosx_10_13_universal2.whl", hash = "sha256:3cd35b7e8aedeb9e34c41385fda4f73ba609e561faedfae0a9e75e44ac558a15", size = 204342, upload-time = "2025-08-09T07:56:38.687Z" }, + { url = "https://files.pythonhosted.org/packages/ce/ec/1edc30a377f0a02689342f214455c3f6c2fbedd896a1d2f856c002fc3062/charset_normalizer-3.4.3-cp314-cp314-manylinux2014_aarch64.manylinux_2_17_aarch64.manylinux_2_28_aarch64.whl", hash = "sha256:b89bc04de1d83006373429975f8ef9e7932534b8cc9ca582e4db7d20d91816db", size = 145995, upload-time = "2025-08-09T07:56:40.048Z" }, + { url = "https://files.pythonhosted.org/packages/17/e5/5e67ab85e6d22b04641acb5399c8684f4d37caf7558a53859f0283a650e9/charset_normalizer-3.4.3-cp314-cp314-manylinux2014_ppc64le.manylinux_2_17_ppc64le.manylinux_2_28_ppc64le.whl", hash = "sha256:2001a39612b241dae17b4687898843f254f8748b796a2e16f1051a17078d991d", size = 158640, upload-time = "2025-08-09T07:56:41.311Z" }, + { url = "https://files.pythonhosted.org/packages/f1/e5/38421987f6c697ee3722981289d554957c4be652f963d71c5e46a262e135/charset_normalizer-3.4.3-cp314-cp314-manylinux2014_s390x.manylinux_2_17_s390x.manylinux_2_28_s390x.whl", hash = "sha256:8dcfc373f888e4fb39a7bc57e93e3b845e7f462dacc008d9749568b1c4ece096", size = 156636, upload-time = "2025-08-09T07:56:43.195Z" }, + { url = "https://files.pythonhosted.org/packages/a0/e4/5a075de8daa3ec0745a9a3b54467e0c2967daaaf2cec04c845f73493e9a1/charset_normalizer-3.4.3-cp314-cp314-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl", hash = "sha256:18b97b8404387b96cdbd30ad660f6407799126d26a39ca65729162fd810a99aa", size = 150939, upload-time = "2025-08-09T07:56:44.819Z" }, + { url = "https://files.pythonhosted.org/packages/02/f7/3611b32318b30974131db62b4043f335861d4d9b49adc6d57c1149cc49d4/charset_normalizer-3.4.3-cp314-cp314-musllinux_1_2_aarch64.whl", hash = "sha256:ccf600859c183d70eb47e05a44cd80a4ce77394d1ac0f79dbd2dd90a69a3a049", size = 148580, upload-time = "2025-08-09T07:56:46.684Z" }, + { url = "https://files.pythonhosted.org/packages/7e/61/19b36f4bd67f2793ab6a99b979b4e4f3d8fc754cbdffb805335df4337126/charset_normalizer-3.4.3-cp314-cp314-musllinux_1_2_ppc64le.whl", hash = "sha256:53cd68b185d98dde4ad8990e56a58dea83a4162161b1ea9272e5c9182ce415e0", size = 159870, upload-time = "2025-08-09T07:56:47.941Z" }, + { url = "https://files.pythonhosted.org/packages/06/57/84722eefdd338c04cf3030ada66889298eaedf3e7a30a624201e0cbe424a/charset_normalizer-3.4.3-cp314-cp314-musllinux_1_2_s390x.whl", hash = "sha256:30a96e1e1f865f78b030d65241c1ee850cdf422d869e9028e2fc1d5e4db73b92", size = 157797, upload-time = "2025-08-09T07:56:49.756Z" }, + { url = "https://files.pythonhosted.org/packages/72/2a/aff5dd112b2f14bcc3462c312dce5445806bfc8ab3a7328555da95330e4b/charset_normalizer-3.4.3-cp314-cp314-musllinux_1_2_x86_64.whl", hash = "sha256:d716a916938e03231e86e43782ca7878fb602a125a91e7acb8b5112e2e96ac16", size = 152224, upload-time = "2025-08-09T07:56:51.369Z" }, + { url = "https://files.pythonhosted.org/packages/b7/8c/9839225320046ed279c6e839d51f028342eb77c91c89b8ef2549f951f3ec/charset_normalizer-3.4.3-cp314-cp314-win32.whl", hash = "sha256:c6dbd0ccdda3a2ba7c2ecd9d77b37f3b5831687d8dc1b6ca5f56a4880cc7b7ce", size = 100086, upload-time = "2025-08-09T07:56:52.722Z" }, + { url = "https://files.pythonhosted.org/packages/ee/7a/36fbcf646e41f710ce0a563c1c9a343c6edf9be80786edeb15b6f62e17db/charset_normalizer-3.4.3-cp314-cp314-win_amd64.whl", hash = "sha256:73dc19b562516fc9bcf6e5d6e596df0b4eb98d87e4f79f3ae71840e6ed21361c", size = 107400, upload-time = "2025-08-09T07:56:55.172Z" }, + { url = "https://files.pythonhosted.org/packages/8a/1f/f041989e93b001bc4e44bb1669ccdcf54d3f00e628229a85b08d330615c5/charset_normalizer-3.4.3-py3-none-any.whl", hash = "sha256:ce571ab16d890d23b5c278547ba694193a45011ff86a9162a71307ed9f86759a", size = 53175, upload-time = "2025-08-09T07:57:26.864Z" }, +] + [[package]] name = "click" version = "8.2.1" @@ -98,6 +158,55 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/e7/05/c19819d5e3d95294a6f5947fb9b9629efb316b96de511b418c53d245aae6/cycler-0.12.1-py3-none-any.whl", hash = "sha256:85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30", size = 8321, upload-time = "2023-10-07T05:32:16.783Z" }, ] +[[package]] +name = "dash" +version = "3.2.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "flask" }, + { name = "importlib-metadata" }, + { name = "nest-asyncio" }, + { name = "plotly" }, + { name = "requests" }, + { name = "retrying" }, + { name = "setuptools" }, + { name = "typing-extensions" }, + { name = "werkzeug" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/80/37/8b5621e0a0b3c6e81a8b6cd3f033aa4b750f53e288dd1a494a887a8a06e9/dash-3.2.0.tar.gz", hash = "sha256:93300b9b99498f8b8ed267e61c455b4ee1282c7e4d4b518600eec87ce6ddea55", size = 7558708, upload-time = "2025-07-31T19:18:59.014Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/d3/36/e0010483ca49b9bf6f389631ccea07b3ff6b678d14d8c7a0a4357860c36a/dash-3.2.0-py3-none-any.whl", hash = "sha256:4c1819588d83bed2cbcf5807daa5c2380c8c85789a6935a733f018f04ad8a6a2", size = 7900661, upload-time = "2025-07-31T19:18:50.679Z" }, +] + +[[package]] +name = "dash-bootstrap-components" +version = "2.0.4" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "dash" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/cc/d4/5b7da808ff5acb3a6ca702f504d8ef05bc7d4c475b18dadefd783b1120c3/dash_bootstrap_components-2.0.4.tar.gz", hash = "sha256:c3206c0923774bbc6a6ddaa7822b8d9aa5326b0d3c1e7cd795cc975025fe2484", size = 115599, upload-time = "2025-08-20T19:42:09.449Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/d6/38/1efeec8b4d741c09ccd169baf8a00c07a0176b58e418d4cd0c30dffedd22/dash_bootstrap_components-2.0.4-py3-none-any.whl", hash = "sha256:767cf0084586c1b2b614ccf50f79fe4525fdbbf8e3a161ed60016e584a14f5d1", size = 204044, upload-time = "2025-08-20T19:42:07.928Z" }, +] + +[[package]] +name = "flask" +version = "3.1.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "blinker" }, + { name = "click" }, + { name = "itsdangerous" }, + { name = "jinja2" }, + { name = "markupsafe" }, + { name = "werkzeug" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/dc/6d/cfe3c0fcc5e477df242b98bfe186a4c34357b4847e87ecaef04507332dab/flask-3.1.2.tar.gz", hash = "sha256:bf656c15c80190ed628ad08cdfd3aaa35beb087855e2f494910aa3774cc4fd87", size = 720160, upload-time = "2025-08-19T21:03:21.205Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/ec/f9/7f9263c5695f4bd0023734af91bedb2ff8209e8de6ead162f35d8dc762fd/flask-3.1.2-py3-none-any.whl", hash = "sha256:ca1d8112ec8a6158cc29ea4858963350011b5c846a414cdb7a954aa9e967d03c", size = 103308, upload-time = "2025-08-19T21:03:19.499Z" }, +] + [[package]] name = "fonttools" version = "4.59.1" @@ -139,6 +248,27 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/0f/64/9d606e66d498917cd7a2ff24f558010d42d6fd4576d9dd57f0bd98333f5a/fonttools-4.59.1-py3-none-any.whl", hash = "sha256:647db657073672a8330608970a984d51573557f328030566521bc03415535042", size = 1130094, upload-time = "2025-08-14T16:28:12.048Z" }, ] +[[package]] +name = "idna" +version = "3.10" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/f1/70/7703c29685631f5a7590aa73f1f1d3fa9a380e654b86af429e0934a32f7d/idna-3.10.tar.gz", hash = "sha256:12f65c9b470abda6dc35cf8e63cc574b1c52b11df2c86030af0ac09b01b13ea9", size = 190490, upload-time = "2024-09-15T18:07:39.745Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/76/c6/c88e154df9c4e1a2a66ccf0005a88dfb2650c1dffb6f5ce603dfbd452ce3/idna-3.10-py3-none-any.whl", hash = "sha256:946d195a0d259cbba61165e88e65941f16e9b36ea6ddb97f00452bae8b1287d3", size = 70442, upload-time = "2024-09-15T18:07:37.964Z" }, +] + +[[package]] +name = "importlib-metadata" +version = "8.7.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "zipp" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/76/66/650a33bd90f786193e4de4b3ad86ea60b53c89b669a5c7be931fac31cdb0/importlib_metadata-8.7.0.tar.gz", hash = "sha256:d13b81ad223b890aa16c5471f2ac3056cf76c5f10f82d6f9292f0b415f389000", size = 56641, upload-time = "2025-04-27T15:29:01.736Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/20/b0/36bd937216ec521246249be3bf9855081de4c5e06a0c9b4219dbeda50373/importlib_metadata-8.7.0-py3-none-any.whl", hash = "sha256:e5dd1551894c77868a30651cef00984d50e1002d06942a7101d34870c5f02afd", size = 27656, upload-time = "2025-04-27T15:29:00.214Z" }, +] + [[package]] name = "iniconfig" version = "2.1.0" @@ -148,6 +278,27 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/2c/e1/e6716421ea10d38022b952c159d5161ca1193197fb744506875fbb87ea7b/iniconfig-2.1.0-py3-none-any.whl", hash = "sha256:9deba5723312380e77435581c6bf4935c94cbfab9b1ed33ef8d238ea168eb760", size = 6050, upload-time = "2025-03-19T20:10:01.071Z" }, ] +[[package]] +name = "itsdangerous" +version = "2.2.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/9c/cb/8ac0172223afbccb63986cc25049b154ecfb5e85932587206f42317be31d/itsdangerous-2.2.0.tar.gz", hash = "sha256:e0050c0b7da1eea53ffaf149c0cfbb5c6e2e2b69c4bef22c81fa6eb73e5f6173", size = 54410, upload-time = "2024-04-16T21:28:15.614Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/04/96/92447566d16df59b2a776c0fb82dbc4d9e07cd95062562af01e408583fc4/itsdangerous-2.2.0-py3-none-any.whl", hash = "sha256:c6242fc49e35958c8b15141343aa660db5fc54d4f13a1db01a3f5891b98700ef", size = 16234, upload-time = "2024-04-16T21:28:14.499Z" }, +] + +[[package]] +name = "jinja2" +version = "3.1.6" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "markupsafe" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/df/bf/f7da0350254c0ed7c72f3e33cef02e048281fec7ecec5f032d4aac52226b/jinja2-3.1.6.tar.gz", hash = "sha256:0137fb05990d35f1275a587e9aee6d56da821fc83491a0fb838183be43f66d6d", size = 245115, upload-time = "2025-03-05T20:05:02.478Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/62/a1/3d680cbfd5f4b8f15abc1d571870c5fc3e594bb582bc3b64ea099db13e56/jinja2-3.1.6-py3-none-any.whl", hash = "sha256:85ece4451f492d0c13c5dd7c13a64681a86afae63a5f347908daf103ce6d2f67", size = 134899, upload-time = "2025-03-05T20:05:00.369Z" }, +] + [[package]] name = "kiwisolver" version = "1.4.9" @@ -232,6 +383,44 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/94/54/e7d793b573f298e1c9013b8c4dade17d481164aa517d1d7148619c2cedbf/markdown_it_py-4.0.0-py3-none-any.whl", hash = "sha256:87327c59b172c5011896038353a81343b6754500a08cd7a4973bb48c6d578147", size = 87321, upload-time = "2025-08-11T12:57:51.923Z" }, ] +[[package]] +name = "markupsafe" +version = "3.0.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/b2/97/5d42485e71dfc078108a86d6de8fa46db44a1a9295e89c5d6d4a06e23a62/markupsafe-3.0.2.tar.gz", hash = "sha256:ee55d3edf80167e48ea11a923c7386f4669df67d7994554387f84e7d8b0a2bf0", size = 20537, upload-time = "2024-10-18T15:21:54.129Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/22/09/d1f21434c97fc42f09d290cbb6350d44eb12f09cc62c9476effdb33a18aa/MarkupSafe-3.0.2-cp312-cp312-macosx_10_13_universal2.whl", hash = "sha256:9778bd8ab0a994ebf6f84c2b949e65736d5575320a17ae8984a77fab08db94cf", size = 14274, upload-time = "2024-10-18T15:21:13.777Z" }, + { url = "https://files.pythonhosted.org/packages/6b/b0/18f76bba336fa5aecf79d45dcd6c806c280ec44538b3c13671d49099fdd0/MarkupSafe-3.0.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:846ade7b71e3536c4e56b386c2a47adf5741d2d8b94ec9dc3e92e5e1ee1e2225", size = 12348, upload-time = "2024-10-18T15:21:14.822Z" }, + { url = "https://files.pythonhosted.org/packages/e0/25/dd5c0f6ac1311e9b40f4af06c78efde0f3b5cbf02502f8ef9501294c425b/MarkupSafe-3.0.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:1c99d261bd2d5f6b59325c92c73df481e05e57f19837bdca8413b9eac4bd8028", size = 24149, upload-time = "2024-10-18T15:21:15.642Z" }, + { url = "https://files.pythonhosted.org/packages/f3/f0/89e7aadfb3749d0f52234a0c8c7867877876e0a20b60e2188e9850794c17/MarkupSafe-3.0.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:e17c96c14e19278594aa4841ec148115f9c7615a47382ecb6b82bd8fea3ab0c8", size = 23118, upload-time = "2024-10-18T15:21:17.133Z" }, + { url = "https://files.pythonhosted.org/packages/d5/da/f2eeb64c723f5e3777bc081da884b414671982008c47dcc1873d81f625b6/MarkupSafe-3.0.2-cp312-cp312-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:88416bd1e65dcea10bc7569faacb2c20ce071dd1f87539ca2ab364bf6231393c", size = 22993, upload-time = "2024-10-18T15:21:18.064Z" }, + { url = "https://files.pythonhosted.org/packages/da/0e/1f32af846df486dce7c227fe0f2398dc7e2e51d4a370508281f3c1c5cddc/MarkupSafe-3.0.2-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:2181e67807fc2fa785d0592dc2d6206c019b9502410671cc905d132a92866557", size = 24178, upload-time = "2024-10-18T15:21:18.859Z" }, + { url = "https://files.pythonhosted.org/packages/c4/f6/bb3ca0532de8086cbff5f06d137064c8410d10779c4c127e0e47d17c0b71/MarkupSafe-3.0.2-cp312-cp312-musllinux_1_2_i686.whl", hash = "sha256:52305740fe773d09cffb16f8ed0427942901f00adedac82ec8b67752f58a1b22", size = 23319, upload-time = "2024-10-18T15:21:19.671Z" }, + { url = "https://files.pythonhosted.org/packages/a2/82/8be4c96ffee03c5b4a034e60a31294daf481e12c7c43ab8e34a1453ee48b/MarkupSafe-3.0.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:ad10d3ded218f1039f11a75f8091880239651b52e9bb592ca27de44eed242a48", size = 23352, upload-time = "2024-10-18T15:21:20.971Z" }, + { url = "https://files.pythonhosted.org/packages/51/ae/97827349d3fcffee7e184bdf7f41cd6b88d9919c80f0263ba7acd1bbcb18/MarkupSafe-3.0.2-cp312-cp312-win32.whl", hash = "sha256:0f4ca02bea9a23221c0182836703cbf8930c5e9454bacce27e767509fa286a30", size = 15097, upload-time = "2024-10-18T15:21:22.646Z" }, + { url = "https://files.pythonhosted.org/packages/c1/80/a61f99dc3a936413c3ee4e1eecac96c0da5ed07ad56fd975f1a9da5bc630/MarkupSafe-3.0.2-cp312-cp312-win_amd64.whl", hash = "sha256:8e06879fc22a25ca47312fbe7c8264eb0b662f6db27cb2d3bbbc74b1df4b9b87", size = 15601, upload-time = "2024-10-18T15:21:23.499Z" }, + { url = "https://files.pythonhosted.org/packages/83/0e/67eb10a7ecc77a0c2bbe2b0235765b98d164d81600746914bebada795e97/MarkupSafe-3.0.2-cp313-cp313-macosx_10_13_universal2.whl", hash = "sha256:ba9527cdd4c926ed0760bc301f6728ef34d841f405abf9d4f959c478421e4efd", size = 14274, upload-time = "2024-10-18T15:21:24.577Z" }, + { url = "https://files.pythonhosted.org/packages/2b/6d/9409f3684d3335375d04e5f05744dfe7e9f120062c9857df4ab490a1031a/MarkupSafe-3.0.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:f8b3d067f2e40fe93e1ccdd6b2e1d16c43140e76f02fb1319a05cf2b79d99430", size = 12352, upload-time = "2024-10-18T15:21:25.382Z" }, + { url = "https://files.pythonhosted.org/packages/d2/f5/6eadfcd3885ea85fe2a7c128315cc1bb7241e1987443d78c8fe712d03091/MarkupSafe-3.0.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:569511d3b58c8791ab4c2e1285575265991e6d8f8700c7be0e88f86cb0672094", size = 24122, upload-time = "2024-10-18T15:21:26.199Z" }, + { url = "https://files.pythonhosted.org/packages/0c/91/96cf928db8236f1bfab6ce15ad070dfdd02ed88261c2afafd4b43575e9e9/MarkupSafe-3.0.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:15ab75ef81add55874e7ab7055e9c397312385bd9ced94920f2802310c930396", size = 23085, upload-time = "2024-10-18T15:21:27.029Z" }, + { url = "https://files.pythonhosted.org/packages/c2/cf/c9d56af24d56ea04daae7ac0940232d31d5a8354f2b457c6d856b2057d69/MarkupSafe-3.0.2-cp313-cp313-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:f3818cb119498c0678015754eba762e0d61e5b52d34c8b13d770f0719f7b1d79", size = 22978, upload-time = "2024-10-18T15:21:27.846Z" }, + { url = "https://files.pythonhosted.org/packages/2a/9f/8619835cd6a711d6272d62abb78c033bda638fdc54c4e7f4272cf1c0962b/MarkupSafe-3.0.2-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:cdb82a876c47801bb54a690c5ae105a46b392ac6099881cdfb9f6e95e4014c6a", size = 24208, upload-time = "2024-10-18T15:21:28.744Z" }, + { url = "https://files.pythonhosted.org/packages/f9/bf/176950a1792b2cd2102b8ffeb5133e1ed984547b75db47c25a67d3359f77/MarkupSafe-3.0.2-cp313-cp313-musllinux_1_2_i686.whl", hash = "sha256:cabc348d87e913db6ab4aa100f01b08f481097838bdddf7c7a84b7575b7309ca", size = 23357, upload-time = "2024-10-18T15:21:29.545Z" }, + { url = "https://files.pythonhosted.org/packages/ce/4f/9a02c1d335caabe5c4efb90e1b6e8ee944aa245c1aaaab8e8a618987d816/MarkupSafe-3.0.2-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:444dcda765c8a838eaae23112db52f1efaf750daddb2d9ca300bcae1039adc5c", size = 23344, upload-time = "2024-10-18T15:21:30.366Z" }, + { url = "https://files.pythonhosted.org/packages/ee/55/c271b57db36f748f0e04a759ace9f8f759ccf22b4960c270c78a394f58be/MarkupSafe-3.0.2-cp313-cp313-win32.whl", hash = "sha256:bcf3e58998965654fdaff38e58584d8937aa3096ab5354d493c77d1fdd66d7a1", size = 15101, upload-time = "2024-10-18T15:21:31.207Z" }, + { url = "https://files.pythonhosted.org/packages/29/88/07df22d2dd4df40aba9f3e402e6dc1b8ee86297dddbad4872bd5e7b0094f/MarkupSafe-3.0.2-cp313-cp313-win_amd64.whl", hash = "sha256:e6a2a455bd412959b57a172ce6328d2dd1f01cb2135efda2e4576e8a23fa3b0f", size = 15603, upload-time = "2024-10-18T15:21:32.032Z" }, + { url = "https://files.pythonhosted.org/packages/62/6a/8b89d24db2d32d433dffcd6a8779159da109842434f1dd2f6e71f32f738c/MarkupSafe-3.0.2-cp313-cp313t-macosx_10_13_universal2.whl", hash = "sha256:b5a6b3ada725cea8a5e634536b1b01c30bcdcd7f9c6fff4151548d5bf6b3a36c", size = 14510, upload-time = "2024-10-18T15:21:33.625Z" }, + { url = "https://files.pythonhosted.org/packages/7a/06/a10f955f70a2e5a9bf78d11a161029d278eeacbd35ef806c3fd17b13060d/MarkupSafe-3.0.2-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:a904af0a6162c73e3edcb969eeeb53a63ceeb5d8cf642fade7d39e7963a22ddb", size = 12486, upload-time = "2024-10-18T15:21:34.611Z" }, + { url = "https://files.pythonhosted.org/packages/34/cf/65d4a571869a1a9078198ca28f39fba5fbb910f952f9dbc5220afff9f5e6/MarkupSafe-3.0.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:4aa4e5faecf353ed117801a068ebab7b7e09ffb6e1d5e412dc852e0da018126c", size = 25480, upload-time = "2024-10-18T15:21:35.398Z" }, + { url = "https://files.pythonhosted.org/packages/0c/e3/90e9651924c430b885468b56b3d597cabf6d72be4b24a0acd1fa0e12af67/MarkupSafe-3.0.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:c0ef13eaeee5b615fb07c9a7dadb38eac06a0608b41570d8ade51c56539e509d", size = 23914, upload-time = "2024-10-18T15:21:36.231Z" }, + { url = "https://files.pythonhosted.org/packages/66/8c/6c7cf61f95d63bb866db39085150df1f2a5bd3335298f14a66b48e92659c/MarkupSafe-3.0.2-cp313-cp313t-manylinux_2_5_i686.manylinux1_i686.manylinux_2_17_i686.manylinux2014_i686.whl", hash = "sha256:d16a81a06776313e817c951135cf7340a3e91e8c1ff2fac444cfd75fffa04afe", size = 23796, upload-time = "2024-10-18T15:21:37.073Z" }, + { url = "https://files.pythonhosted.org/packages/bb/35/cbe9238ec3f47ac9a7c8b3df7a808e7cb50fe149dc7039f5f454b3fba218/MarkupSafe-3.0.2-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:6381026f158fdb7c72a168278597a5e3a5222e83ea18f543112b2662a9b699c5", size = 25473, upload-time = "2024-10-18T15:21:37.932Z" }, + { url = "https://files.pythonhosted.org/packages/e6/32/7621a4382488aa283cc05e8984a9c219abad3bca087be9ec77e89939ded9/MarkupSafe-3.0.2-cp313-cp313t-musllinux_1_2_i686.whl", hash = "sha256:3d79d162e7be8f996986c064d1c7c817f6df3a77fe3d6859f6f9e7be4b8c213a", size = 24114, upload-time = "2024-10-18T15:21:39.799Z" }, + { url = "https://files.pythonhosted.org/packages/0d/80/0985960e4b89922cb5a0bac0ed39c5b96cbc1a536a99f30e8c220a996ed9/MarkupSafe-3.0.2-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:131a3c7689c85f5ad20f9f6fb1b866f402c445b220c19fe4308c0b147ccd2ad9", size = 24098, upload-time = "2024-10-18T15:21:40.813Z" }, + { url = "https://files.pythonhosted.org/packages/82/78/fedb03c7d5380df2427038ec8d973587e90561b2d90cd472ce9254cf348b/MarkupSafe-3.0.2-cp313-cp313t-win32.whl", hash = "sha256:ba8062ed2cf21c07a9e295d5b8a2a5ce678b913b45fdf68c32d95d6c1291e0b6", size = 15208, upload-time = "2024-10-18T15:21:41.814Z" }, + { url = "https://files.pythonhosted.org/packages/4f/65/6079a46068dfceaeabb5dcad6d674f5f5c61a6fa5673746f42a9f4c233b3/MarkupSafe-3.0.2-cp313-cp313t-win_amd64.whl", hash = "sha256:e444a31f8db13eb18ada366ab3cf45fd4b31e4db1236a4448f68778c1d1a5a2f", size = 15739, upload-time = "2024-10-18T15:21:42.784Z" }, +] + [[package]] name = "matplotlib" version = "3.10.5" @@ -295,6 +484,24 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/b3/38/89ba8ad64ae25be8de66a6d463314cf1eb366222074cfda9ee839c56a4b4/mdurl-0.1.2-py3-none-any.whl", hash = "sha256:84008a41e51615a49fc9966191ff91509e3c40b939176e643fd50a5c2196b8f8", size = 9979, upload-time = "2022-08-14T12:40:09.779Z" }, ] +[[package]] +name = "narwhals" +version = "2.2.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/01/8f/6b3d8c19540eaaa50778a8bbbe54e025d3f93aca6cdd5a4de3044c36f83c/narwhals-2.2.0.tar.gz", hash = "sha256:f6a34f2699acabe2c17339c104f0bec28b9f7a55fbc7f8d485d49bea72d12b8a", size = 547070, upload-time = "2025-08-25T07:51:58.904Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/dd/54/1ecca75e51d7da8ca53d1ffa8636ef9077a6eaa31f43ade71360b3e6449a/narwhals-2.2.0-py3-none-any.whl", hash = "sha256:2b5e3d61a486fa4328c286b0c8018b3e781a964947ff725d66ba12f6d5ca3d2a", size = 401021, upload-time = "2025-08-25T07:51:56.97Z" }, +] + +[[package]] +name = "nest-asyncio" +version = "1.6.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/83/f8/51569ac65d696c8ecbee95938f89d4abf00f47d58d48f6fbabfe8f0baefe/nest_asyncio-1.6.0.tar.gz", hash = "sha256:6f172d5449aca15afd6c646851f4e31e02c598d553a667e38cafa997cfec55fe", size = 7418, upload-time = "2024-01-21T14:25:19.227Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a0/c4/c2971a3ba4c6103a3d10c4b0f24f461ddc027f0f09763220cf35ca1401b3/nest_asyncio-1.6.0-py3-none-any.whl", hash = "sha256:87af6efd6b5e897c81050477ef65c62e2b2f35d51703cae01aff2905b1852e1c", size = 5195, upload-time = "2024-01-21T14:25:17.223Z" }, +] + [[package]] name = "numpy" version = "2.3.2" @@ -363,7 +570,11 @@ name = "orderflow-backtest" version = "0.1.0" source = { virtual = "." } dependencies = [ + { name = "dash" }, + { name = "dash-bootstrap-components" }, { name = "matplotlib" }, + { name = "pandas" }, + { name = "plotly" }, { name = "pyqt5" }, { name = "typer" }, ] @@ -375,7 +586,11 @@ dev = [ [package.metadata] requires-dist = [ + { name = "dash", specifier = ">=2.18.0" }, + { name = "dash-bootstrap-components", specifier = ">=1.5.0" }, { name = "matplotlib", specifier = ">=3.10.5" }, + { name = "pandas", specifier = ">=2.0.0" }, + { name = "plotly", specifier = ">=5.18.0" }, { name = "pyqt5", specifier = ">=5.15.11" }, { name = "typer", specifier = ">=0.16.1" }, ] @@ -392,6 +607,40 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/20/12/38679034af332785aac8774540895e234f4d07f7545804097de4b666afd8/packaging-25.0-py3-none-any.whl", hash = "sha256:29572ef2b1f17581046b3a2227d5c611fb25ec70ca1ba8554b24b0e69331a484", size = 66469, upload-time = "2025-04-19T11:48:57.875Z" }, ] +[[package]] +name = "pandas" +version = "2.3.2" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "numpy" }, + { name = "python-dateutil" }, + { name = "pytz" }, + { name = "tzdata" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/79/8e/0e90233ac205ad182bd6b422532695d2b9414944a280488105d598c70023/pandas-2.3.2.tar.gz", hash = "sha256:ab7b58f8f82706890924ccdfb5f48002b83d2b5a3845976a9fb705d36c34dcdb", size = 4488684, upload-time = "2025-08-21T10:28:29.257Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/ec/db/614c20fb7a85a14828edd23f1c02db58a30abf3ce76f38806155d160313c/pandas-2.3.2-cp312-cp312-macosx_10_13_x86_64.whl", hash = "sha256:3fbb977f802156e7a3f829e9d1d5398f6192375a3e2d1a9ee0803e35fe70a2b9", size = 11587652, upload-time = "2025-08-21T10:27:15.888Z" }, + { url = "https://files.pythonhosted.org/packages/99/b0/756e52f6582cade5e746f19bad0517ff27ba9c73404607c0306585c201b3/pandas-2.3.2-cp312-cp312-macosx_11_0_arm64.whl", hash = "sha256:1b9b52693123dd234b7c985c68b709b0b009f4521000d0525f2b95c22f15944b", size = 10717686, upload-time = "2025-08-21T10:27:18.486Z" }, + { url = "https://files.pythonhosted.org/packages/37/4c/dd5ccc1e357abfeee8353123282de17997f90ff67855f86154e5a13b81e5/pandas-2.3.2-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0bd281310d4f412733f319a5bc552f86d62cddc5f51d2e392c8787335c994175", size = 11278722, upload-time = "2025-08-21T10:27:21.149Z" }, + { url = "https://files.pythonhosted.org/packages/d3/a4/f7edcfa47e0a88cda0be8b068a5bae710bf264f867edfdf7b71584ace362/pandas-2.3.2-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:96d31a6b4354e3b9b8a2c848af75d31da390657e3ac6f30c05c82068b9ed79b9", size = 11987803, upload-time = "2025-08-21T10:27:23.767Z" }, + { url = "https://files.pythonhosted.org/packages/f6/61/1bce4129f93ab66f1c68b7ed1c12bac6a70b1b56c5dab359c6bbcd480b52/pandas-2.3.2-cp312-cp312-musllinux_1_2_aarch64.whl", hash = "sha256:df4df0b9d02bb873a106971bb85d448378ef14b86ba96f035f50bbd3688456b4", size = 12766345, upload-time = "2025-08-21T10:27:26.6Z" }, + { url = "https://files.pythonhosted.org/packages/8e/46/80d53de70fee835531da3a1dae827a1e76e77a43ad22a8cd0f8142b61587/pandas-2.3.2-cp312-cp312-musllinux_1_2_x86_64.whl", hash = "sha256:213a5adf93d020b74327cb2c1b842884dbdd37f895f42dcc2f09d451d949f811", size = 13439314, upload-time = "2025-08-21T10:27:29.213Z" }, + { url = "https://files.pythonhosted.org/packages/28/30/8114832daff7489f179971dbc1d854109b7f4365a546e3ea75b6516cea95/pandas-2.3.2-cp312-cp312-win_amd64.whl", hash = "sha256:8c13b81a9347eb8c7548f53fd9a4f08d4dfe996836543f805c987bafa03317ae", size = 10983326, upload-time = "2025-08-21T10:27:31.901Z" }, + { url = "https://files.pythonhosted.org/packages/27/64/a2f7bf678af502e16b472527735d168b22b7824e45a4d7e96a4fbb634b59/pandas-2.3.2-cp313-cp313-macosx_10_13_x86_64.whl", hash = "sha256:0c6ecbac99a354a051ef21c5307601093cb9e0f4b1855984a084bfec9302699e", size = 11531061, upload-time = "2025-08-21T10:27:34.647Z" }, + { url = "https://files.pythonhosted.org/packages/54/4c/c3d21b2b7769ef2f4c2b9299fcadd601efa6729f1357a8dbce8dd949ed70/pandas-2.3.2-cp313-cp313-macosx_11_0_arm64.whl", hash = "sha256:c6f048aa0fd080d6a06cc7e7537c09b53be6642d330ac6f54a600c3ace857ee9", size = 10668666, upload-time = "2025-08-21T10:27:37.203Z" }, + { url = "https://files.pythonhosted.org/packages/50/e2/f775ba76ecfb3424d7f5862620841cf0edb592e9abd2d2a5387d305fe7a8/pandas-2.3.2-cp313-cp313-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:0064187b80a5be6f2f9c9d6bdde29372468751dfa89f4211a3c5871854cfbf7a", size = 11332835, upload-time = "2025-08-21T10:27:40.188Z" }, + { url = "https://files.pythonhosted.org/packages/8f/52/0634adaace9be2d8cac9ef78f05c47f3a675882e068438b9d7ec7ef0c13f/pandas-2.3.2-cp313-cp313-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:4ac8c320bded4718b298281339c1a50fb00a6ba78cb2a63521c39bec95b0209b", size = 12057211, upload-time = "2025-08-21T10:27:43.117Z" }, + { url = "https://files.pythonhosted.org/packages/0b/9d/2df913f14b2deb9c748975fdb2491da1a78773debb25abbc7cbc67c6b549/pandas-2.3.2-cp313-cp313-musllinux_1_2_aarch64.whl", hash = "sha256:114c2fe4f4328cf98ce5716d1532f3ab79c5919f95a9cfee81d9140064a2e4d6", size = 12749277, upload-time = "2025-08-21T10:27:45.474Z" }, + { url = "https://files.pythonhosted.org/packages/87/af/da1a2417026bd14d98c236dba88e39837182459d29dcfcea510b2ac9e8a1/pandas-2.3.2-cp313-cp313-musllinux_1_2_x86_64.whl", hash = "sha256:48fa91c4dfb3b2b9bfdb5c24cd3567575f4e13f9636810462ffed8925352be5a", size = 13415256, upload-time = "2025-08-21T10:27:49.885Z" }, + { url = "https://files.pythonhosted.org/packages/22/3c/f2af1ce8840ef648584a6156489636b5692c162771918aa95707c165ad2b/pandas-2.3.2-cp313-cp313-win_amd64.whl", hash = "sha256:12d039facec710f7ba305786837d0225a3444af7bbd9c15c32ca2d40d157ed8b", size = 10982579, upload-time = "2025-08-21T10:28:08.435Z" }, + { url = "https://files.pythonhosted.org/packages/f3/98/8df69c4097a6719e357dc249bf437b8efbde808038268e584421696cbddf/pandas-2.3.2-cp313-cp313t-macosx_10_13_x86_64.whl", hash = "sha256:c624b615ce97864eb588779ed4046186f967374185c047070545253a52ab2d57", size = 12028163, upload-time = "2025-08-21T10:27:52.232Z" }, + { url = "https://files.pythonhosted.org/packages/0e/23/f95cbcbea319f349e10ff90db488b905c6883f03cbabd34f6b03cbc3c044/pandas-2.3.2-cp313-cp313t-macosx_11_0_arm64.whl", hash = "sha256:0cee69d583b9b128823d9514171cabb6861e09409af805b54459bd0c821a35c2", size = 11391860, upload-time = "2025-08-21T10:27:54.673Z" }, + { url = "https://files.pythonhosted.org/packages/ad/1b/6a984e98c4abee22058aa75bfb8eb90dce58cf8d7296f8bc56c14bc330b0/pandas-2.3.2-cp313-cp313t-manylinux_2_17_aarch64.manylinux2014_aarch64.whl", hash = "sha256:2319656ed81124982900b4c37f0e0c58c015af9a7bbc62342ba5ad07ace82ba9", size = 11309830, upload-time = "2025-08-21T10:27:56.957Z" }, + { url = "https://files.pythonhosted.org/packages/15/d5/f0486090eb18dd8710bf60afeaf638ba6817047c0c8ae5c6a25598665609/pandas-2.3.2-cp313-cp313t-manylinux_2_17_x86_64.manylinux2014_x86_64.whl", hash = "sha256:b37205ad6f00d52f16b6d09f406434ba928c1a1966e2771006a9033c736d30d2", size = 11883216, upload-time = "2025-08-21T10:27:59.302Z" }, + { url = "https://files.pythonhosted.org/packages/10/86/692050c119696da19e20245bbd650d8dfca6ceb577da027c3a73c62a047e/pandas-2.3.2-cp313-cp313t-musllinux_1_2_aarch64.whl", hash = "sha256:837248b4fc3a9b83b9c6214699a13f069dc13510a6a6d7f9ba33145d2841a012", size = 12699743, upload-time = "2025-08-21T10:28:02.447Z" }, + { url = "https://files.pythonhosted.org/packages/cd/d7/612123674d7b17cf345aad0a10289b2a384bff404e0463a83c4a3a59d205/pandas-2.3.2-cp313-cp313t-musllinux_1_2_x86_64.whl", hash = "sha256:d2c3554bd31b731cd6490d94a28f3abb8dd770634a9e06eb6d2911b9827db370", size = 13186141, upload-time = "2025-08-21T10:28:05.377Z" }, +] + [[package]] name = "pillow" version = "11.3.0" @@ -458,6 +707,19 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/89/c7/5572fa4a3f45740eaab6ae86fcdf7195b55beac1371ac8c619d880cfe948/pillow-11.3.0-cp314-cp314t-win_arm64.whl", hash = "sha256:79ea0d14d3ebad43ec77ad5272e6ff9bba5b679ef73375ea760261207fa8e0aa", size = 2512835, upload-time = "2025-07-01T09:15:50.399Z" }, ] +[[package]] +name = "plotly" +version = "6.3.0" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "narwhals" }, + { name = "packaging" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/a0/64/850de5076f4436410e1ce4f6a69f4313ef6215dfea155f3f6559335cad29/plotly-6.3.0.tar.gz", hash = "sha256:8840a184d18ccae0f9189c2b9a2943923fd5cae7717b723f36eef78f444e5a73", size = 6923926, upload-time = "2025-08-12T20:22:14.127Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/95/a9/12e2dc726ba1ba775a2c6922d5d5b4488ad60bdab0888c337c194c8e6de8/plotly-6.3.0-py3-none-any.whl", hash = "sha256:7ad806edce9d3cdd882eaebaf97c0c9e252043ed1ed3d382c3e3520ec07806d4", size = 9791257, upload-time = "2025-08-12T20:22:09.205Z" }, +] + [[package]] name = "pluggy" version = "1.6.0" @@ -556,6 +818,39 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/ec/57/56b9bcc3c9c6a792fcbaf139543cee77261f3651ca9da0c93f5c1221264b/python_dateutil-2.9.0.post0-py2.py3-none-any.whl", hash = "sha256:a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427", size = 229892, upload-time = "2024-03-01T18:36:18.57Z" }, ] +[[package]] +name = "pytz" +version = "2025.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/f8/bf/abbd3cdfb8fbc7fb3d4d38d320f2441b1e7cbe29be4f23797b4a2b5d8aac/pytz-2025.2.tar.gz", hash = "sha256:360b9e3dbb49a209c21ad61809c7fb453643e048b38924c765813546746e81c3", size = 320884, upload-time = "2025-03-25T02:25:00.538Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/81/c4/34e93fe5f5429d7570ec1fa436f1986fb1f00c3e0f43a589fe2bbcd22c3f/pytz-2025.2-py2.py3-none-any.whl", hash = "sha256:5ddf76296dd8c44c26eb8f4b6f35488f3ccbf6fbbd7adee0b7262d43f0ec2f00", size = 509225, upload-time = "2025-03-25T02:24:58.468Z" }, +] + +[[package]] +name = "requests" +version = "2.32.5" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "certifi" }, + { name = "charset-normalizer" }, + { name = "idna" }, + { name = "urllib3" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/c9/74/b3ff8e6c8446842c3f5c837e9c3dfcfe2018ea6ecef224c710c85ef728f4/requests-2.32.5.tar.gz", hash = "sha256:dbba0bac56e100853db0ea71b82b4dfd5fe2bf6d3754a8893c3af500cec7d7cf", size = 134517, upload-time = "2025-08-18T20:46:02.573Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/1e/db/4254e3eabe8020b458f1a747140d32277ec7a271daf1d235b70dc0b4e6e3/requests-2.32.5-py3-none-any.whl", hash = "sha256:2462f94637a34fd532264295e186976db0f5d453d1cdd31473c85a6a161affb6", size = 64738, upload-time = "2025-08-18T20:46:00.542Z" }, +] + +[[package]] +name = "retrying" +version = "1.4.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/c8/5a/b17e1e257d3e6f2e7758930e1256832c9ddd576f8631781e6a072914befa/retrying-1.4.2.tar.gz", hash = "sha256:d102e75d53d8d30b88562d45361d6c6c934da06fab31bd81c0420acb97a8ba39", size = 11411, upload-time = "2025-08-03T03:35:25.189Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/67/f3/6cd296376653270ac1b423bb30bd70942d9916b6978c6f40472d6ac038e7/retrying-1.4.2-py3-none-any.whl", hash = "sha256:bbc004aeb542a74f3569aeddf42a2516efefcdaff90df0eb38fbfbf19f179f59", size = 10859, upload-time = "2025-08-03T03:35:23.829Z" }, +] + [[package]] name = "rich" version = "14.1.0" @@ -569,6 +864,15 @@ wheels = [ { url = "https://files.pythonhosted.org/packages/e3/30/3c4d035596d3cf444529e0b2953ad0466f6049528a879d27534700580395/rich-14.1.0-py3-none-any.whl", hash = "sha256:536f5f1785986d6dbdea3c75205c473f970777b4a0d6c6dd1b696aa05a3fa04f", size = 243368, upload-time = "2025-07-25T07:32:56.73Z" }, ] +[[package]] +name = "setuptools" +version = "80.9.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/18/5d/3bf57dcd21979b887f014ea83c24ae194cfcd12b9e0fda66b957c69d1fca/setuptools-80.9.0.tar.gz", hash = "sha256:f36b47402ecde768dbfafc46e8e4207b4360c654f1f3bb84475f0a28628fb19c", size = 1319958, upload-time = "2025-05-27T00:56:51.443Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a3/dc/17031897dae0efacfea57dfd3a82fdd2a2aeb58e0ff71b77b87e44edc772/setuptools-80.9.0-py3-none-any.whl", hash = "sha256:062d34222ad13e0cc312a4c02d73f059e86a4acbfbdea8f8f76b28c99f306922", size = 1201486, upload-time = "2025-05-27T00:56:49.664Z" }, +] + [[package]] name = "shellingham" version = "1.5.4" @@ -610,3 +914,42 @@ sdist = { url = "https://files.pythonhosted.org/packages/98/5a/da40306b885cc8c09 wheels = [ { url = "https://files.pythonhosted.org/packages/b5/00/d631e67a838026495268c2f6884f3711a15a9a2a96cd244fdaea53b823fb/typing_extensions-4.14.1-py3-none-any.whl", hash = "sha256:d1e1e3b58374dc93031d6eda2420a48ea44a36c2b4766a4fdeb3710755731d76", size = 43906, upload-time = "2025-07-04T13:28:32.743Z" }, ] + +[[package]] +name = "tzdata" +version = "2025.2" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/95/32/1a225d6164441be760d75c2c42e2780dc0873fe382da3e98a2e1e48361e5/tzdata-2025.2.tar.gz", hash = "sha256:b60a638fcc0daffadf82fe0f57e53d06bdec2f36c4df66280ae79bce6bd6f2b9", size = 196380, upload-time = "2025-03-23T13:54:43.652Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/5c/23/c7abc0ca0a1526a0774eca151daeb8de62ec457e77262b66b359c3c7679e/tzdata-2025.2-py2.py3-none-any.whl", hash = "sha256:1a403fada01ff9221ca8044d701868fa132215d84beb92242d9acd2147f667a8", size = 347839, upload-time = "2025-03-23T13:54:41.845Z" }, +] + +[[package]] +name = "urllib3" +version = "2.5.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/15/22/9ee70a2574a4f4599c47dd506532914ce044817c7752a79b6a51286319bc/urllib3-2.5.0.tar.gz", hash = "sha256:3fc47733c7e419d4bc3f6b3dc2b4f890bb743906a30d56ba4a5bfa4bbff92760", size = 393185, upload-time = "2025-06-18T14:07:41.644Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/a7/c2/fe1e52489ae3122415c51f387e221dd0773709bad6c6cdaa599e8a2c5185/urllib3-2.5.0-py3-none-any.whl", hash = "sha256:e6b01673c0fa6a13e374b50871808eb3bf7046c4b125b216f6bf1cc604cff0dc", size = 129795, upload-time = "2025-06-18T14:07:40.39Z" }, +] + +[[package]] +name = "werkzeug" +version = "3.1.3" +source = { registry = "https://pypi.org/simple" } +dependencies = [ + { name = "markupsafe" }, +] +sdist = { url = "https://files.pythonhosted.org/packages/9f/69/83029f1f6300c5fb2471d621ab06f6ec6b3324685a2ce0f9777fd4a8b71e/werkzeug-3.1.3.tar.gz", hash = "sha256:60723ce945c19328679790e3282cc758aa4a6040e4bb330f53d30fa546d44746", size = 806925, upload-time = "2024-11-08T15:52:18.093Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/52/24/ab44c871b0f07f491e5d2ad12c9bd7358e527510618cb1b803a88e986db1/werkzeug-3.1.3-py3-none-any.whl", hash = "sha256:54b78bf3716d19a65be4fceccc0d1d7b89e608834989dfae50ea87564639213e", size = 224498, upload-time = "2024-11-08T15:52:16.132Z" }, +] + +[[package]] +name = "zipp" +version = "3.23.0" +source = { registry = "https://pypi.org/simple" } +sdist = { url = "https://files.pythonhosted.org/packages/e3/02/0f2892c661036d50ede074e376733dca2ae7c6eb617489437771209d4180/zipp-3.23.0.tar.gz", hash = "sha256:a07157588a12518c9d4034df3fbbee09c814741a33ff63c05fa29d26a2404166", size = 25547, upload-time = "2025-06-08T17:06:39.4Z" } +wheels = [ + { url = "https://files.pythonhosted.org/packages/2e/54/647ade08bf0db230bfea292f893923872fd20be6ac6f53b2b936ba839d75/zipp-3.23.0-py3-none-any.whl", hash = "sha256:071652d6115ed432f5ce1d34c336c0adfd6a884660d1e9712a256d3d3bd4b14e", size = 10276, upload-time = "2025-06-08T17:06:38.034Z" }, +] diff --git a/visualizer.py b/visualizer.py deleted file mode 100644 index ea46c8a..0000000 --- a/visualizer.py +++ /dev/null @@ -1,256 +0,0 @@ -# Set Qt5Agg as the default backend before importing pyplot -import os -import matplotlib -matplotlib.use('Qt5Agg') - -import logging -import matplotlib.pyplot as plt -import matplotlib.dates as mdates -from matplotlib.patches import Rectangle -from datetime import datetime, timezone -from collections import deque -from typing import Deque, Optional -from pathlib import Path -from storage import Book, BookSnapshot -from models import Metric -from repositories.sqlite_metrics_repository import SQLiteMetricsRepository - - -class Visualizer: - """Render OHLC candles, volume, OBI and CVD charts from order book data. - - Aggregates mid-prices into OHLC bars and displays OBI/CVD metrics beneath. - Uses Qt5Agg backend for interactive charts. - - Public methods: - - update_from_book: process all snapshots from a Book and display charts - - set_db_path: set database path for loading stored metrics - - flush: finalize and draw the last in-progress bar - - show: display the Matplotlib window using Qt5Agg - """ - - def __init__(self, window_seconds: int = 60, max_bars: int = 200) -> None: - # Create subplots: OHLC on top, Volume below, OBI and CVD at bottom - self.fig, (self.ax_ohlc, self.ax_volume, self.ax_obi, self.ax_cvd) = plt.subplots(4, 1, figsize=(12, 10), sharex=True) - self.window_seconds = int(max(1, window_seconds)) - self.max_bars = int(max(1, max_bars)) - self._db_path: Optional[Path] = None - - # Bars buffer: list of tuples (start_ts, open, high, low, close) - self._bars: Deque[tuple[int, float, float, float, float, float]] = deque(maxlen=self.max_bars) - - # Current in-progress bucket state - self._current_bucket_ts: Optional[int] = None - self._open: Optional[float] = None - self._high: Optional[float] = None - self._low: Optional[float] = None - self._close: Optional[float] = None - self._volume: float = 0.0 - - def _bucket_start(self, ts: int) -> int: - return int(ts) - (int(ts) % self.window_seconds) - - def _normalize_ts_seconds(self, ts: int) -> int: - """Return epoch seconds from possibly ms/us timestamps. - - Heuristic based on magnitude: - - >1e14: microseconds → divide by 1e6 - - >1e11: milliseconds → divide by 1e3 - - else: seconds - """ - its = int(ts) - if its > 100_000_000_000_000: # > 1e14 → microseconds - return its // 1_000_000 - if its > 100_000_000_000: # > 1e11 → milliseconds - return its // 1_000 - return its - - def set_db_path(self, db_path: Path) -> None: - """Set the database path for loading stored metrics.""" - self._db_path = db_path - - def _load_stored_metrics(self, start_timestamp: int, end_timestamp: int) -> list[Metric]: - """Load stored metrics from database for the given time range.""" - if not self._db_path: - return [] - - try: - metrics_repo = SQLiteMetricsRepository(self._db_path) - with metrics_repo.connect() as conn: - return metrics_repo.load_metrics_by_timerange(conn, start_timestamp, end_timestamp) - except Exception as e: - logging.error(f"Error loading metrics for visualization: {e}") - return [] - - def _append_current_bar(self) -> None: - if self._current_bucket_ts is None or self._open is None: - return - self._bars.append( - ( - self._current_bucket_ts, - float(self._open), - float(self._high if self._high is not None else self._open), - float(self._low if self._low is not None else self._open), - float(self._close if self._close is not None else self._open), - float(self._volume), - ) - ) - - def _draw(self) -> None: - # Clear all subplots - self.ax_ohlc.clear() - self.ax_volume.clear() - self.ax_obi.clear() - self.ax_cvd.clear() - - if not self._bars: - self.fig.canvas.draw_idle() - return - - day_seconds = 24 * 60 * 60 - width = self.window_seconds / day_seconds - - # Draw OHLC candlesticks and extract volume data - volume_data = [] - timestamps_ohlc = [] - - for start_ts, open_, high_, low_, close_, volume in self._bars: - # Collect volume data - dt = datetime.fromtimestamp(start_ts, tz=timezone.utc).replace(tzinfo=None) - x = mdates.date2num(dt) - volume_data.append((x, volume)) - timestamps_ohlc.append(x) - - # Wick - self.ax_ohlc.vlines(x + width / 2.0, low_, high_, color="black", linewidth=1.0) - - # Body - lower = min(open_, close_) - height = max(1e-12, abs(close_ - open_)) - color = "green" if close_ >= open_ else "red" - rect = Rectangle((x, lower), width, height, facecolor=color, edgecolor=color, linewidth=1.0) - self.ax_ohlc.add_patch(rect) - - # Plot volume bars - if volume_data: - volumes_x = [v[0] for v in volume_data] - volumes_y = [v[1] for v in volume_data] - self.ax_volume.bar(volumes_x, volumes_y, width=width, alpha=0.7, color='blue', align='center') - - # Draw metrics if available - if self._bars: - first_ts = self._bars[0][0] - last_ts = self._bars[-1][0] - metrics = self._load_stored_metrics(first_ts, last_ts + self.window_seconds) - - if metrics: - # Prepare data for plotting - timestamps = [mdates.date2num(datetime.fromtimestamp(m.timestamp / 1000, tz=timezone.utc).replace(tzinfo=None)) for m in metrics] - obi_values = [m.obi for m in metrics] - cvd_values = [m.cvd for m in metrics] - - # Plot OBI and CVD - self.ax_obi.plot(timestamps, obi_values, 'b-', linewidth=1, label='OBI') - self.ax_obi.axhline(y=0, color='gray', linestyle='--', alpha=0.5) - - self.ax_cvd.plot(timestamps, cvd_values, 'r-', linewidth=1, label='CVD') - - # Configure axes - self.ax_ohlc.set_title("Mid-price OHLC") - self.ax_ohlc.set_ylabel("Price") - - self.ax_volume.set_title("Volume") - self.ax_volume.set_ylabel("Volume") - - self.ax_obi.set_title("Order Book Imbalance (OBI)") - self.ax_obi.set_ylabel("OBI") - self.ax_obi.set_ylim(-1.1, 1.1) - - self.ax_cvd.set_title("Cumulative Volume Delta (CVD)") - self.ax_cvd.set_ylabel("CVD") - self.ax_cvd.set_xlabel("Time (UTC)") - - # Format time axis for bottom subplot only - self.ax_cvd.xaxis_date() - self.ax_cvd.xaxis.set_major_formatter(mdates.DateFormatter("%H:%M:%S")) - - self.fig.tight_layout() - self.fig.canvas.draw_idle() - - def update_from_book(self, book: Book) -> None: - """Update the visualizer with all snapshots from the book. - - Uses best bid/ask to compute mid-price; aggregates into OHLC bars. - Processes all snapshots in chronological order. - """ - if not book.snapshots: - logging.warning("Book has no snapshots to visualize") - return - - # Reset state before processing all snapshots - self._bars.clear() - self._current_bucket_ts = None - self._open = self._high = self._low = self._close = None - self._volume = 0.0 - - logging.info(f"Visualizing {len(book.snapshots)} snapshots") - - # Process all snapshots in chronological order - snapshot_count = 0 - for snapshot in sorted(book.snapshots, key=lambda s: s.timestamp): - snapshot_count += 1 - if not snapshot.bids or not snapshot.asks: - continue - - try: - best_bid = max(snapshot.bids.keys()) - best_ask = min(snapshot.asks.keys()) - except (ValueError, TypeError): - continue - - mid = (float(best_bid) + float(best_ask)) / 2.0 - ts_raw = int(snapshot.timestamp) - ts = self._normalize_ts_seconds(ts_raw) - bucket_ts = self._bucket_start(ts) - - # Calculate volume from trades in this snapshot - snapshot_volume = sum(trade.size for trade in snapshot.trades) - - # New bucket: close and store previous bar - if self._current_bucket_ts is None: - self._current_bucket_ts = bucket_ts - self._open = self._high = self._low = self._close = mid - self._volume = snapshot_volume - elif bucket_ts != self._current_bucket_ts: - self._append_current_bar() - self._current_bucket_ts = bucket_ts - self._open = self._high = self._low = self._close = mid - self._volume = snapshot_volume - else: - # Update current bucket OHLC and accumulate volume - if self._high is None or mid > self._high: - self._high = mid - if self._low is None or mid < self._low: - self._low = mid - self._close = mid - self._volume += snapshot_volume - - # Finalize the last bar - self._append_current_bar() - - logging.info(f"Created {len(self._bars)} OHLC bars from {snapshot_count} valid snapshots") - - # Draw all bars - self._draw() - - def flush(self) -> None: - """Finalize the in-progress bar and redraw.""" - self._append_current_bar() - # Reset current state (optional: keep last bucket running) - self._current_bucket_ts = None - self._open = self._high = self._low = self._close = None - self._volume = 0.0 - self._draw() - - def show(self) -> None: - plt.show() \ No newline at end of file diff --git a/visualizer_test.py b/visualizer_test.py deleted file mode 100644 index f7bbda5..0000000 --- a/visualizer_test.py +++ /dev/null @@ -1,39 +0,0 @@ -"""Interactive demo for the Visualizer; run manually, not as a test.""" - -import random -from datetime import datetime - -from visualizer import Visualizer -from storage import Book, BookSnapshot, OrderbookLevel - - -def demo_visualizer_creates_single_bar_on_flush() -> None: - vis = Visualizer(window_seconds=60, max_bars=10) - - book = Book() - ts = datetime.now().timestamp() - - snapshot = BookSnapshot(timestamp=int(ts)) - for r in range(100): - snapshot.bids[100000 + random.random() * 100] = OrderbookLevel( - price=100000 + random.random() * 100, - size=1.0, - liquidation_count=0, - order_count=1, - ) - snapshot.asks[100000 + random.random() * 100] = OrderbookLevel( - price=100000 + random.random() * 100, - size=1.0, - liquidation_count=0, - order_count=1, - ) - - book.add_snapshot(snapshot) - - vis.update_from_book(book) - vis.flush() - vis.show() - - -if __name__ == "__main__": - demo_visualizer_creates_single_bar_on_flush() \ No newline at end of file