557 lines
24 KiB
Python

import pandas as pd
import numpy as np
from ta.volatility import AverageTrueRange
import time
import csv
import math
import os
def load_data(since, until, csv_file):
df = pd.read_csv(csv_file)
df['Timestamp'] = pd.to_datetime(df['Timestamp'], unit='s')
df = df[(df['Timestamp'] >= pd.Timestamp(since)) & (df['Timestamp'] <= pd.Timestamp(until))]
return df
def aggregate_data(df, timeframe):
df = df.set_index('Timestamp')
df = df.resample(timeframe).agg({
'Open': 'first',
'High': 'max',
'Low': 'min',
'Close': 'last',
'Volume': 'sum'
})
df = df.reset_index()
return df
def calculate_okx_taker_maker_fee(amount, is_maker=False):
fee_rate = 0.0008 if is_maker else 0.0010
return amount * fee_rate
def calculate_supertrend(df, period, multiplier):
"""
Calculate the Supertrend indicator for a given period and multiplier.
Optionally displays progress during calculation.
Args:
df (pd.DataFrame): DataFrame with 'High', 'Low', 'Close' columns.
period (int): ATR period.
multiplier (float): Multiplier for ATR.
progress_step (int): Step interval for progress display.
show_progress (bool): Whether to print progress updates.
Returns:
pd.Series: Supertrend values.
"""
# Ensure we have enough data for ATR calculation
if len(df) < period + 1:
print(f"Warning: Not enough data for ATR period {period}. Need at least {period + 1} rows, got {len(df)}")
return pd.Series([np.nan] * len(df), index=df.index)
high = df['High'].values
low = df['Low'].values
close = df['Close'].values
# Calculate True Range first
tr = np.zeros_like(close)
for i in range(1, len(close)):
tr[i] = max(
high[i] - low[i], # Current high - current low
abs(high[i] - close[i-1]), # Current high - previous close
abs(low[i] - close[i-1]) # Current low - previous close
)
# Calculate ATR using simple moving average
atr = np.zeros_like(close)
atr[period] = np.mean(tr[1:period+1]) # First ATR value
for i in range(period+1, len(close)):
atr[i] = (atr[i-1] * (period-1) + tr[i]) / period # Exponential-like smoothing
# Fill initial values with the first valid ATR
atr[:period] = atr[period] if atr[period] > 0 else 0.001
hl2 = (high + low) / 2
upperband = hl2 + (multiplier * atr)
lowerband = hl2 - (multiplier * atr)
supertrend = np.full_like(close, np.nan)
in_uptrend = True
supertrend[0] = upperband[0]
total_steps = len(close) - 1
for i in range(1, len(close)):
if close[i] > upperband[i-1]:
in_uptrend = True
elif close[i] < lowerband[i-1]:
in_uptrend = False
# else, keep previous trend
if in_uptrend:
supertrend[i] = max(lowerband[i], supertrend[i-1] if not np.isnan(supertrend[i-1]) else lowerband[i])
else:
supertrend[i] = min(upperband[i], supertrend[i-1] if not np.isnan(supertrend[i-1]) else upperband[i])
return pd.Series(supertrend, index=df.index)
def add_supertrend_indicators(df):
"""
Adds Supertrend indicators to the dataframe for the specified (period, multiplier) pairs.
Args:
df (pd.DataFrame): DataFrame with columns 'High', 'Low', 'Close'.
Returns:
pd.DataFrame: DataFrame with new Supertrend columns added.
"""
supertrend_params = [(12, 3.0), (10, 1.0), (11, 2.0)]
for period, multiplier in supertrend_params:
try:
st_col = f'supertrend_{period}_{multiplier}'
df[st_col] = calculate_supertrend(df, period, multiplier)
except Exception as e:
print(f"Error calculating Supertrend {period}, {multiplier}: {e}")
df[f'supertrend_{period}_{multiplier}'] = np.nan
return df
def precompute_1min_slice_indices(df_aggregated, df_1min):
"""
Precompute start and end indices for each aggregated bar using searchsorted.
Returns a list of (start_idx, end_idx) tuples for fast iloc slicing.
"""
timestamps = df_aggregated['Timestamp'].values
one_min_timestamps = df_1min['Timestamp'].values
# Ensure both are sorted
sorted_1min = np.argsort(one_min_timestamps)
one_min_timestamps = one_min_timestamps[sorted_1min]
indices = []
prev_idx = 0
for i in range(1, len(timestamps)):
start, end = timestamps[i-1], timestamps[i]
# Find indices using searchsorted (right for start, right for end)
start_idx = np.searchsorted(one_min_timestamps, start, side='right')
end_idx = np.searchsorted(one_min_timestamps, end, side='right')
indices.append((start_idx, end_idx))
return indices, sorted_1min
def estimate_slippage_rate(trade_usd_size, minute_row, base_slippage_rate=0.0003, impact_threshold_pct=0.10, impact_slope=0.0010):
"""
Estimate total slippage rate (decimal) using a hybrid model:
- Base slippage: fixed base_slippage_rate (e.g., 0.0003 = 3 bps)
- Extra slippage: if trade size (USD) > impact_threshold_pct * 1-min USD volume,
add impact_slope * (trade_size/threshold - 1)
Args:
trade_usd_size (float): Trade notional in USD before slippage.
minute_row (pd.Series|None): 1-min bar with 'Volume' and a price ('Close' preferred, fallback 'Open').
base_slippage_rate (float): Base slippage in decimal.
impact_threshold_pct (float): Threshold as fraction of 1-min volume (e.g., 0.10 = 10%).
impact_slope (float): Rate added per 1x over threshold (decimal).
Returns:
float: total slippage rate (>= base_slippage_rate).
"""
if minute_row is None:
return float(base_slippage_rate)
try:
minute_base_vol = float(minute_row.get('Volume', 0.0) or 0.0)
minute_price = float(minute_row.get('Close', minute_row.get('Open', 0.0)) or 0.0)
minute_quote_vol = minute_base_vol * minute_price
except Exception:
minute_quote_vol = 0.0
if minute_quote_vol <= 0 or impact_threshold_pct <= 0:
return float(base_slippage_rate)
threshold_quote = minute_quote_vol * impact_threshold_pct
if trade_usd_size <= threshold_quote:
return float(base_slippage_rate)
over_ratio = (trade_usd_size / threshold_quote) - 1.0
extra_slippage = max(0.0, impact_slope * over_ratio)
return float(base_slippage_rate + extra_slippage)
def backtest(timeframe, df_aggregated, df_1min, stop_loss_pct, progress_step=1000,
base_slippage_rate=0.0003, impact_threshold_pct=0.10, impact_slope=0.0010):
"""
Backtest trading strategy based on meta supertrend logic (all three supertrends agree).
Uses signal transitions and open prices for entry/exit to match original implementation.
"""
start_time = time.time()
required_st_cols = ["supertrend_12_3.0", "supertrend_10_1.0", "supertrend_11_2.0"]
for col in required_st_cols:
if col not in df_aggregated.columns:
raise ValueError(f"Missing required Supertrend column: {col}")
# Calculate trend directions for each supertrend (-1, 0, 1)
trends = []
for col in required_st_cols:
# Convert supertrend values to trend direction based on close price position
trend = np.where(df_aggregated['Close'] > df_aggregated[col], 1, -1)
trends.append(trend)
# Stack trends and calculate meta trend (all must agree)
trends_arr = np.stack(trends, axis=1)
meta_trend = np.where((trends_arr[:,0] == trends_arr[:,1]) & (trends_arr[:,1] == trends_arr[:,2]),
trends_arr[:,0], 0)
meta_trend_signal = meta_trend #incorrect: should be lagging as it introduces lookahead bias.
# Next step: modify OHLCV predictor to not use supertrend as a feature or anyother feature
# that introduces lookahead bias and predict the next close price.
#
# Old code, not that efficient:
# Add signal lagging to avoid lookahead bias
# meta_trend_signal = np.roll(meta_trend, 1)
# meta_trend_signal[0] = 0 # No signal for first bar
# Precompute 1-min slice indices for each aggregated bar
slice_indices, sorted_1min = precompute_1min_slice_indices(df_aggregated, df_1min)
df_1min_sorted = df_1min.iloc[sorted_1min].reset_index(drop=True)
one_min_timestamps_sorted = df_1min_sorted['Timestamp'].values
in_position = False
init_usd = 1000
usd = init_usd
coin = 0
nb_stop_loss = 0
trade_log = []
equity_curve = []
trade_results = []
entry_price = None
entry_time = None
total_slippage_usd = 0.0
total_traded_usd = 0.0
total_steps = len(df_aggregated) - 1
for i in range(1, len(df_aggregated)):
open_price = df_aggregated['Open'][i] # Use open price for entry/exit
close_price = df_aggregated['Close'][i]
timestamp = df_aggregated['Timestamp'][i]
# Get previous and current meta trend signals
prev_mt = meta_trend_signal[i-1] if i > 0 else 0
curr_mt = meta_trend_signal[i]
# Track equity at each bar
equity = usd + coin * close_price
equity_curve.append((timestamp, equity))
# Check stop loss if in position
if in_position:
start_idx, end_idx = slice_indices[i-1]
df_1min_slice = df_1min_sorted.iloc[start_idx:end_idx]
stop_triggered = False
if not df_1min_slice.empty:
stop_loss_threshold = entry_price * (1 - stop_loss_pct)
below_stop = df_1min_slice['Low'] < stop_loss_threshold
if below_stop.any():
first_idx = below_stop.idxmax()
stop_row = df_1min_slice.loc[first_idx]
stop_triggered = True
in_position = False
# More realistic stop loss fill logic with slippage
if stop_row['Open'] < stop_loss_threshold:
base_exit_price = stop_row['Open']
else:
base_exit_price = stop_loss_threshold
trade_usd_size = float(coin * base_exit_price)
slip_rate = estimate_slippage_rate(trade_usd_size, stop_row, base_slippage_rate, impact_threshold_pct, impact_slope)
exit_price = base_exit_price * (1.0 - slip_rate)
exit_time = stop_row['Timestamp']
gross_usd = coin * exit_price
fee = calculate_okx_taker_maker_fee(gross_usd, is_maker=False)
usd = gross_usd - fee
trade_pnl = (exit_price - entry_price) / entry_price if entry_price else 0
total_slippage_usd += trade_usd_size * slip_rate
total_traded_usd += trade_usd_size
trade_results.append(trade_pnl)
trade_log.append({
'type': 'stop_loss',
'time': exit_time,
'base_price': base_exit_price,
'effective_price': exit_price,
'slippage_rate': slip_rate,
'usd': usd,
'coin': 0,
'pnl': trade_pnl,
'fee': fee
})
coin = 0
nb_stop_loss += 1
entry_price = None
entry_time = None
if stop_triggered:
continue
# Entry condition: signal changes TO bullish (prev != 1 and curr == 1)
if not in_position and prev_mt != 1 and curr_mt == 1:
in_position = True
fee = calculate_okx_taker_maker_fee(usd, is_maker=False)
usd_after_fee = usd - fee
# Slippage on buy increases price
try:
ts64 = np.datetime64(timestamp)
idx_min = int(np.searchsorted(one_min_timestamps_sorted, ts64, side='left'))
minute_row = df_1min_sorted.iloc[idx_min] if 0 <= idx_min < len(df_1min_sorted) else None
except Exception:
minute_row = None
trade_usd_size = float(usd_after_fee)
slip_rate = estimate_slippage_rate(trade_usd_size, minute_row, base_slippage_rate, impact_threshold_pct, impact_slope)
effective_entry_price = open_price * (1.0 + slip_rate)
coin = usd_after_fee / effective_entry_price
entry_price = effective_entry_price
entry_time = timestamp
usd = 0
total_slippage_usd += trade_usd_size * slip_rate
total_traded_usd += trade_usd_size
trade_log.append({
'type': 'buy',
'time': timestamp,
'base_price': open_price,
'effective_price': effective_entry_price,
'slippage_rate': slip_rate,
'usd': usd,
'coin': coin,
'fee': fee
})
# Exit condition: signal changes TO bearish (prev == 1 and curr == -1)
elif in_position and prev_mt == 1 and curr_mt == -1:
in_position = False
# Slippage on sell reduces price
try:
ts64 = np.datetime64(timestamp)
idx_min = int(np.searchsorted(one_min_timestamps_sorted, ts64, side='left'))
minute_row = df_1min_sorted.iloc[idx_min] if 0 <= idx_min < len(df_1min_sorted) else None
except Exception:
minute_row = None
base_exit_price = open_price
trade_usd_size = float(coin * base_exit_price)
slip_rate = estimate_slippage_rate(trade_usd_size, minute_row, base_slippage_rate, impact_threshold_pct, impact_slope)
exit_price = base_exit_price * (1.0 - slip_rate)
exit_time = timestamp
gross_usd = coin * exit_price
fee = calculate_okx_taker_maker_fee(gross_usd, is_maker=False)
usd = gross_usd - fee
trade_pnl = (exit_price - entry_price) / entry_price if entry_price else 0
total_slippage_usd += trade_usd_size * slip_rate
total_traded_usd += trade_usd_size
trade_results.append(trade_pnl)
trade_log.append({
'type': 'sell',
'time': exit_time,
'base_price': base_exit_price,
'effective_price': exit_price,
'slippage_rate': slip_rate,
'usd': usd,
'coin': 0,
'pnl': trade_pnl,
'fee': fee
})
coin = 0
entry_price = None
entry_time = None
if i % progress_step == 0 or i == total_steps:
percent = (i / total_steps) * 100
print(f"\rTimeframe: {timeframe},\tProgress: {percent:.1f}%\tCurrent equity: {equity:.2f}\033[K", end='', flush=True)
# Force close any open position at the end
if in_position:
final_open_price = df_aggregated['Open'].iloc[-1] # Use open price for consistency
final_timestamp = df_aggregated['Timestamp'].iloc[-1]
try:
ts64 = np.datetime64(final_timestamp)
idx_min = int(np.searchsorted(one_min_timestamps_sorted, ts64, side='left'))
minute_row = df_1min_sorted.iloc[idx_min] if 0 <= idx_min < len(df_1min_sorted) else None
except Exception:
minute_row = None
base_exit_price = final_open_price
trade_usd_size = float(coin * base_exit_price)
slip_rate = estimate_slippage_rate(trade_usd_size, minute_row, base_slippage_rate, impact_threshold_pct, impact_slope)
final_effective_price = base_exit_price * (1.0 - slip_rate)
gross_usd = coin * final_effective_price
fee = calculate_okx_taker_maker_fee(gross_usd, is_maker=False)
usd = gross_usd - fee
trade_pnl = (final_effective_price - entry_price) / entry_price if entry_price else 0
total_slippage_usd += trade_usd_size * slip_rate
total_traded_usd += trade_usd_size
trade_results.append(trade_pnl)
trade_log.append({
'type': 'forced_close',
'time': final_timestamp,
'base_price': base_exit_price,
'effective_price': final_effective_price,
'slippage_rate': slip_rate,
'usd': usd,
'coin': 0,
'pnl': trade_pnl,
'fee': fee
})
coin = 0
in_position = False
entry_price = None
print()
print(f"Timeframe: {timeframe},\tTotal profit: {usd - init_usd},\tNumber of stop losses: {nb_stop_loss}")
# --- Performance Metrics ---
equity_arr = np.array([e[1] for e in equity_curve])
# Handle edge cases for empty or invalid equity data
if len(equity_arr) == 0:
print("Warning: No equity data available")
return None
returns = np.diff(equity_arr) / equity_arr[:-1]
# Filter out infinite and NaN returns
returns = returns[np.isfinite(returns)]
total_return = (equity_arr[-1] - equity_arr[0]) / equity_arr[0] if equity_arr[0] != 0 else 0
running_max = np.maximum.accumulate(equity_arr)
if equity_arr[-1] <= 0.01:
max_drawdown = -1.0
else:
drawdowns = (equity_arr - running_max) / running_max
max_drawdown = drawdowns.min() if len(drawdowns) > 0 and np.isfinite(drawdowns).any() else 0
if len(returns) > 1 and np.std(returns) > 1e-9:
sharpe = np.mean(returns) / np.std(returns) * math.sqrt(252)
else:
sharpe = 0
wins = [1 for r in trade_results if r > 0]
win_rate = len(wins) / len(trade_results) if trade_results else 0
num_trades = len(trade_results)
print(f"Performance Metrics:")
print(f" Total Return: {total_return*100:.2f}%")
print(f" Max Drawdown: {max_drawdown*100:.2f}%")
print(f" Sharpe Ratio: {sharpe:.2f}")
print(f" Win Rate: {win_rate*100:.2f}%")
print(f" Number of Trades: {num_trades}")
print(f" Final Equity: ${equity_arr[-1]:.2f}")
print(f" Initial Equity: ${equity_arr[0]:.2f}")
# --- Save Trade Log ---
log_dir = "backtest_logs"
os.makedirs(log_dir, exist_ok=True)
# Format stop_loss_pct for filename (e.g., 0.05 -> 0p05)
stop_loss_str = f"{stop_loss_pct:.2f}".replace('.', 'p')
log_path = os.path.join(log_dir, f"trade_log_{timeframe}_sl{stop_loss_str}.csv")
if trade_log:
all_keys = set()
for entry in trade_log:
all_keys.update(entry.keys())
all_keys = list(all_keys)
trade_log_filled = []
for entry in trade_log:
filled_entry = {k: entry.get(k, None) for k in all_keys}
trade_log_filled.append(filled_entry)
# Calculate total fees for this backtest
total_fees = sum(entry.get('fee', 0) for entry in trade_log)
# Write summary header row, then trade log header and rows
with open(log_path, 'w', newline='') as f:
writer = csv.writer(f)
summary_header = [
'elapsed_time_sec', 'total_return', 'max_drawdown', 'sharpe_ratio',
'win_rate', 'num_trades', 'final_equity', 'initial_equity', 'num_stop_losses', 'total_fees',
'total_slippage_usd', 'avg_slippage_bps'
]
summary_values = [
f"{time.time() - start_time:.2f}",
f"{total_return*100:.2f}%",
f"{max_drawdown*100:.2f}%",
f"{sharpe:.2f}",
f"{win_rate*100:.2f}%",
str(num_trades),
f"${equity_arr[-1]:.2f}",
f"${equity_arr[0]:.2f}",
str(nb_stop_loss),
f"${total_fees:.4f}",
f"${total_slippage_usd:.4f}",
f"{(total_slippage_usd / total_traded_usd * 10000.0) if total_traded_usd > 0 else 0:.2f}"
]
writer.writerow(summary_header)
writer.writerow(summary_values)
writer.writerow([]) # Blank row for separation
dict_writer = csv.DictWriter(f, fieldnames=all_keys)
dict_writer.writeheader()
dict_writer.writerows(trade_log_filled)
print(f"Trade log saved to {log_path}")
else:
print("No trades to log.")
# Return summary metrics (excluding elapsed time)
return {
'timeframe': timeframe,
'stop_loss': stop_loss_pct,
'total_return': total_return,
'max_drawdown': max_drawdown,
'sharpe_ratio': sharpe,
'win_rate': win_rate,
'num_trades': num_trades,
'final_equity': equity_arr[-1],
'initial_equity': equity_arr[0],
'num_stop_losses': nb_stop_loss,
'total_fees': total_fees if trade_log else 0,
'total_slippage_usd': total_slippage_usd,
'avg_slippage_bps': (total_slippage_usd / total_traded_usd * 10000.0) if total_traded_usd > 0 else 0.0
}
if __name__ == "__main__":
timeframes = ["5min", "15min", "30min", "1h", "4h", "1d", "2d"]
# timeframes = ["5min", "15min", "1h", "4h", "1d"]
# timeframes = ["30min"]
stoplosses = [0.1, 0.2, 0.3, 0.4, 0.5]
# Slippage configuration (OKX Spot): base in bps, plus volume-impact model
slippage_base_bps = 10 # 10 bps base slippage (realistic, conservative)
impact_threshold_pct = 0.10 # e.g., start impact beyond 10% of 1-min volume
impact_slope = 0.0010 # incremental slippage per 1x over threshold
# df_1min = load_data('2021-11-01', '2024-10-16', '../data/btcusd_1-min_data.csv')
df_1min = load_data('2021-11-01', '2025-08-19', '../data/btcusd_okx_1-min_data.csv')
# Prepare summary CSV
summary_csv_path = "backtest_summary.csv"
summary_header = [
'timeframe', 'stop_loss', 'total_return', 'max_drawdown', 'sharpe_ratio',
'win_rate', 'num_trades', 'final_equity', 'initial_equity', 'num_stop_losses', 'total_fees',
'total_slippage_usd', 'avg_slippage_bps'
]
with open(summary_csv_path, 'w', newline='') as summary_file:
writer = csv.DictWriter(summary_file, fieldnames=summary_header)
writer.writeheader()
for timeframe in timeframes:
df_aggregated = aggregate_data(df_1min, timeframe)
df_aggregated = add_supertrend_indicators(df_aggregated)
for stop_loss_pct in stoplosses:
summary = backtest(
timeframe,
df_aggregated,
df_1min,
stop_loss_pct=stop_loss_pct,
base_slippage_rate=slippage_base_bps / 10000.0,
impact_threshold_pct=impact_threshold_pct,
impact_slope=impact_slope
)
if summary is not None:
# Format values for CSV (e.g., floats as rounded strings)
summary_row = {
'timeframe': summary['timeframe'],
'stop_loss': summary['stop_loss'],
'total_return': f"{summary['total_return']*100:.2f}%",
'max_drawdown': f"{summary['max_drawdown']*100:.2f}%",
'sharpe_ratio': f"{summary['sharpe_ratio']:.2f}",
'win_rate': f"{summary['win_rate']*100:.2f}%",
'num_trades': summary['num_trades'],
'final_equity': f"${summary['final_equity']:.2f}",
'initial_equity': f"${summary['initial_equity']:.2f}",
'num_stop_losses': summary['num_stop_losses'],
'total_fees': f"${summary['total_fees']:.4f}",
'total_slippage_usd': f"${summary['total_slippage_usd']:.4f}",
'avg_slippage_bps': f"{summary['avg_slippage_bps']:.2f}"
}
writer.writerow(summary_row)