OHLCVPredictor/technical_indicator_functions.py

256 lines
8.6 KiB
Python

from numba import njit
import pandas as pd
import numpy as np
def calc_rsi(close):
from ta.momentum import RSIIndicator
return ('rsi', RSIIndicator(close, window=14).rsi())
def calc_macd(close):
from ta.trend import MACD
return ('macd', MACD(close).macd())
def calc_bollinger(close):
from ta.volatility import BollingerBands
bb = BollingerBands(close=close, window=20, window_dev=2)
return [
('bb_bbm', bb.bollinger_mavg()),
('bb_bbh', bb.bollinger_hband()),
('bb_bbl', bb.bollinger_lband()),
('bb_bb_width', bb.bollinger_hband() - bb.bollinger_lband())
]
def calc_stochastic(high, low, close):
from ta.momentum import StochasticOscillator
stoch = StochasticOscillator(high=high, low=low, close=close, window=14, smooth_window=3)
return [
('stoch_k', stoch.stoch()),
('stoch_d', stoch.stoch_signal())
]
def calc_atr(high, low, close):
from ta.volatility import AverageTrueRange
atr = AverageTrueRange(high=high, low=low, close=close, window=14)
return ('atr', atr.average_true_range())
def calc_cci(high, low, close):
from ta.trend import CCIIndicator
cci = CCIIndicator(high=high, low=low, close=close, window=20)
return ('cci', cci.cci())
def calc_williamsr(high, low, close):
from ta.momentum import WilliamsRIndicator
willr = WilliamsRIndicator(high=high, low=low, close=close, lbp=14)
return ('williams_r', willr.williams_r())
def calc_ema(close):
from ta.trend import EMAIndicator
ema = EMAIndicator(close=close, window=14)
return ('ema_14', ema.ema_indicator())
def calc_obv(close, volume):
from ta.volume import OnBalanceVolumeIndicator
obv = OnBalanceVolumeIndicator(close=close, volume=volume)
return ('obv', obv.on_balance_volume())
def calc_cmf(high, low, close, volume):
from ta.volume import ChaikinMoneyFlowIndicator
cmf = ChaikinMoneyFlowIndicator(high=high, low=low, close=close, volume=volume, window=20)
return ('cmf', cmf.chaikin_money_flow())
def calc_sma(close):
from ta.trend import SMAIndicator
return [
('sma_50', SMAIndicator(close, window=50).sma_indicator()),
('sma_200', SMAIndicator(close, window=200).sma_indicator())
]
def calc_roc(close):
from ta.momentum import ROCIndicator
return ('roc_10', ROCIndicator(close, window=10).roc())
def calc_momentum(close):
return ('momentum_10', close - close.shift(10))
def calc_psar(high, low, close):
# Use the Numba-accelerated fast_psar function for speed
psar_values = fast_psar(np.array(high), np.array(low), np.array(close))
return [('psar', pd.Series(psar_values, index=close.index))]
def calc_donchian(high, low, close):
from ta.volatility import DonchianChannel
donchian = DonchianChannel(high, low, close, window=20)
return [
('donchian_hband', donchian.donchian_channel_hband()),
('donchian_lband', donchian.donchian_channel_lband()),
('donchian_mband', donchian.donchian_channel_mband())
]
def calc_keltner(high, low, close):
from ta.volatility import KeltnerChannel
keltner = KeltnerChannel(high, low, close, window=20)
return [
('keltner_hband', keltner.keltner_channel_hband()),
('keltner_lband', keltner.keltner_channel_lband()),
('keltner_mband', keltner.keltner_channel_mband())
]
def calc_dpo(close):
from ta.trend import DPOIndicator
return ('dpo_20', DPOIndicator(close, window=20).dpo())
def calc_ultimate(high, low, close):
from ta.momentum import UltimateOscillator
return ('ultimate_osc', UltimateOscillator(high, low, close).ultimate_oscillator())
def calc_ichimoku(high, low):
from ta.trend import IchimokuIndicator
ichimoku = IchimokuIndicator(high, low, window1=9, window2=26, window3=52)
return [
('ichimoku_a', ichimoku.ichimoku_a()),
('ichimoku_b', ichimoku.ichimoku_b()),
('ichimoku_base_line', ichimoku.ichimoku_base_line()),
('ichimoku_conversion_line', ichimoku.ichimoku_conversion_line())
]
def calc_elder_ray(close, low, high):
from ta.trend import EMAIndicator
ema = EMAIndicator(close, window=13).ema_indicator()
return [
('elder_ray_bull', ema - low),
('elder_ray_bear', ema - high)
]
def calc_daily_return(close):
from ta.others import DailyReturnIndicator
return ('daily_return', DailyReturnIndicator(close).daily_return())
@njit
def fast_psar(high, low, close, af=0.02, max_af=0.2):
length = len(close)
psar = np.zeros(length)
bull = True
af_step = af
ep = low[0]
psar[0] = low[0]
for i in range(1, length):
prev_psar = psar[i-1]
if bull:
psar[i] = prev_psar + af_step * (ep - prev_psar)
if low[i] < psar[i]:
bull = False
psar[i] = ep
af_step = af
ep = low[i]
else:
if high[i] > ep:
ep = high[i]
af_step = min(af_step + af, max_af)
else:
psar[i] = prev_psar + af_step * (ep - prev_psar)
if high[i] > psar[i]:
bull = True
psar[i] = ep
af_step = af
ep = high[i]
else:
if low[i] < ep:
ep = low[i]
af_step = min(af_step + af, max_af)
return psar
def compute_lag(df, col, lag):
return df[col].shift(lag)
def compute_rolling(df, col, stat, window):
if stat == 'mean':
return df[col].rolling(window).mean()
elif stat == 'std':
return df[col].rolling(window).std()
elif stat == 'min':
return df[col].rolling(window).min()
elif stat == 'max':
return df[col].rolling(window).max()
def compute_log_return(df, horizon):
return np.log(df['Close'] / df['Close'].shift(horizon))
def compute_volatility(df, window):
return df['log_return'].rolling(window).std()
def run_feature_job(job, df):
feature_name, func, *args = job
print(f'Computing feature: {feature_name}')
result = func(df, *args)
return feature_name, result
def calc_adx(high, low, close):
from ta.trend import ADXIndicator
adx = ADXIndicator(high=high, low=low, close=close, window=14)
return [
('adx', adx.adx()),
('adx_pos', adx.adx_pos()),
('adx_neg', adx.adx_neg())
]
def calc_trix(close):
from ta.trend import TRIXIndicator
trix = TRIXIndicator(close=close, window=15)
return ('trix', trix.trix())
def calc_vortex(high, low, close):
from ta.trend import VortexIndicator
vortex = VortexIndicator(high=high, low=low, close=close, window=14)
return [
('vortex_pos', vortex.vortex_indicator_pos()),
('vortex_neg', vortex.vortex_indicator_neg())
]
def calc_kama(close):
# Simple alternative to KAMA using EMA
from ta.trend import EMAIndicator
kama = EMAIndicator(close, window=10).ema_indicator()
return ('kama', kama)
def calc_force_index(close, volume):
from ta.volume import ForceIndexIndicator
fi = ForceIndexIndicator(close=close, volume=volume, window=13)
return ('force_index', fi.force_index())
def calc_eom(high, low, volume):
from ta.volume import EaseOfMovementIndicator
eom = EaseOfMovementIndicator(high=high, low=low, volume=volume, window=14)
return ('eom', eom.ease_of_movement())
def calc_mfi(high, low, close, volume):
from ta.volume import MFIIndicator
mfi = MFIIndicator(high=high, low=low, close=close, volume=volume, window=14)
return ('mfi', mfi.money_flow_index())
def calc_adi(high, low, close, volume):
from ta.volume import AccDistIndexIndicator
adi = AccDistIndexIndicator(high=high, low=low, close=close, volume=volume)
return ('adi', adi.acc_dist_index())
def calc_tema(close):
# Simple alternative to TEMA using triple EMA
from ta.trend import EMAIndicator
ema1 = EMAIndicator(close, window=10).ema_indicator()
ema2 = EMAIndicator(ema1, window=10).ema_indicator()
ema3 = EMAIndicator(ema2, window=10).ema_indicator()
tema = 3 * ema1 - 3 * ema2 + ema3
return ('tema', tema)
def calc_stochrsi(close):
from ta.momentum import StochRSIIndicator
stochrsi = StochRSIIndicator(close=close, window=14, smooth1=3, smooth2=3)
return [
('stochrsi', stochrsi.stochrsi()),
('stochrsi_k', stochrsi.stochrsi_k()),
('stochrsi_d', stochrsi.stochrsi_d())
]
def calc_awesome_oscillator(high, low):
from ta.momentum import AwesomeOscillatorIndicator
ao = AwesomeOscillatorIndicator(high=high, low=low, window1=5, window2=34)
return ('awesome_osc', ao.awesome_oscillator())