Cycles/cycles/backtest.py
Simon Moisy e5c2988d71 Refactor Backtest class and update strategy functions for improved modularity
- Refactored the Backtest class to encapsulate state and behavior, enhancing clarity and maintainability.
- Updated strategy functions to accept the Backtest instance, streamlining data access and manipulation.
- Introduced a new plotting method in BacktestCharts for visualizing close prices with trend indicators.
- Improved handling of meta_trend data to ensure proper visualization and trend representation.
- Adjusted main execution logic to support the new Backtest structure and enhanced debugging capabilities.
2025-05-22 20:02:14 +08:00

165 lines
6.0 KiB
Python

import pandas as pd
import numpy as np
from cycles.market_fees import MarketFees
class Backtest:
def __init__(self, initial_usd, df, min1_df, init_strategy_fields) -> None:
self.initial_usd = initial_usd
self.usd = initial_usd
self.max_balance = initial_usd
self.coin = 0
self.position = 0
self.entry_price = 0
self.entry_time = None
self.current_trade_min1_start_idx = None
self.current_min1_end_idx = None
self.price_open = None
self.price_close = None
self.current_date = None
self.strategies = {}
self.df = df
self.min1_df = min1_df
self.trade_log = []
self.drawdowns = []
self.trades = []
self = init_strategy_fields(self)
def run(self, entry_strategy, exit_strategy, debug=False):
"""
Runs the backtest using provided entry and exit strategy functions.
The method iterates over the main DataFrame (self.df), simulating trades based on the entry and exit strategies. It tracks balances, drawdowns, and logs each trade, including fees. At the end, it returns a dictionary of performance statistics.
Parameters:
- entry_strategy: function, determines when to enter a trade. Should accept (self, i) and return True to enter.
- exit_strategy: function, determines when to exit a trade. Should accept (self, i) and return (exit_reason, sell_price) or (None, None) to hold.
- debug: bool, whether to print debug info (default: False)
Returns:
- dict with keys: initial_usd, final_usd, n_trades, win_rate, max_drawdown, avg_trade, trade_log, trades, total_fees_usd, and optionally first_trade and last_trade.
"""
for i in range(1, len(self.df)):
self.price_open = self.df['open'].iloc[i]
self.price_close = self.df['close'].iloc[i]
self.current_date = self.df['timestamp'].iloc[i]
if self.position == 0:
if entry_strategy(self, i):
self.handle_entry()
elif self.position == 1:
exit_test_results, sell_price = exit_strategy(self, i)
if exit_test_results is not None:
self.handle_exit(exit_test_results, sell_price)
# Track drawdown
balance = self.usd if self.position == 0 else self.coin * self.price_close
if balance > self.max_balance:
self.max_balance = balance
drawdown = (self.max_balance - balance) / self.max_balance
self.drawdowns.append(drawdown)
# If still in position at end, sell at last close
if self.position == 1:
self.handle_exit("EOD", None)
# Calculate statistics
final_balance = self.usd
n_trades = len(self.trade_log)
wins = [1 for t in self.trade_log if t['exit'] is not None and t['exit'] > t['entry']]
win_rate = len(wins) / n_trades if n_trades > 0 else 0
max_drawdown = max(self.drawdowns) if self.drawdowns else 0
avg_trade = np.mean([t['exit']/t['entry']-1 for t in self.trade_log if t['exit'] is not None]) if self.trade_log else 0
trades = []
total_fees_usd = 0.0
for trade in self.trade_log:
if trade['exit'] is not None:
profit_pct = (trade['exit'] - trade['entry']) / trade['entry']
else:
profit_pct = 0.0
trades.append({
'entry_time': trade['entry_time'],
'exit_time': trade['exit_time'],
'entry': trade['entry'],
'exit': trade['exit'],
'profit_pct': profit_pct,
'type': trade['type'],
'fee_usd': trade['fee_usd']
})
fee_usd = trade.get('fee_usd')
total_fees_usd += fee_usd
results = {
"initial_usd": self.initial_usd,
"final_usd": final_balance,
"n_trades": n_trades,
"win_rate": win_rate,
"max_drawdown": max_drawdown,
"avg_trade": avg_trade,
"trade_log": self.trade_log,
"trades": trades,
"total_fees_usd": total_fees_usd,
}
if n_trades > 0:
results["first_trade"] = {
"entry_time": self.trade_log[0]['entry_time'],
"entry": self.trade_log[0]['entry']
}
results["last_trade"] = {
"exit_time": self.trade_log[-1]['exit_time'],
"exit": self.trade_log[-1]['exit']
}
return results
def handle_entry(self):
entry_fee = MarketFees.calculate_okx_taker_maker_fee(self.usd, is_maker=False)
usd_after_fee = self.usd - entry_fee
self.coin = usd_after_fee / self.price_open
self.entry_price = self.price_open
self.entry_time = self.current_date
self.usd = 0
self.position = 1
trade_log_entry = {
'type': 'BUY',
'entry': self.entry_price,
'exit': None,
'entry_time': self.entry_time,
'exit_time': None,
'fee_usd': entry_fee
}
self.trade_log.append(trade_log_entry)
def handle_exit(self, exit_reason, sell_price):
btc_to_sell = self.coin
exit_price = sell_price if sell_price is not None else self.price_open
usd_gross = btc_to_sell * exit_price
exit_fee = MarketFees.calculate_okx_taker_maker_fee(usd_gross, is_maker=False)
self.usd = usd_gross - exit_fee
exit_log_entry = {
'type': exit_reason,
'entry': self.entry_price,
'exit': exit_price,
'entry_time': self.entry_time,
'exit_time': self.current_date,
'fee_usd': exit_fee
}
self.coin = 0
self.position = 0
self.entry_price = 0
self.trade_log.append(exit_log_entry)