Cycles/main.py
2025-05-20 16:59:17 +08:00

265 lines
10 KiB
Python

import pandas as pd
import numpy as np
import logging
import concurrent.futures
import os
import datetime
import queue
from cycles.trend_detector_simple import TrendDetectorSimple
from cycles.taxes import Taxes
from cycles.utils.storage import Storage
from cycles.utils.gsheets import GSheetBatchPusher
from cycles.utils.system import SystemUtils
# Set up logging
logging.basicConfig(
level=logging.INFO,
format="%(asctime)s [%(levelname)s] %(message)s",
handlers=[
logging.FileHandler("backtest.log"),
logging.StreamHandler()
]
)
# Global queue for batching Google Sheets updates
results_queue = queue.Queue()
def process_timeframe_data(min1_df, df, stop_loss_pcts, rule_name, initial_usd, debug=False):
"""Process the entire timeframe with all stop loss values (no monthly split)"""
df = df.copy().reset_index(drop=True)
trend_detector = TrendDetectorSimple(df, verbose=False)
results_rows = []
trade_rows = []
for stop_loss_pct in stop_loss_pcts:
results = trend_detector.backtest_meta_supertrend(
min1_df,
initial_usd=initial_usd,
stop_loss_pct=stop_loss_pct,
debug=debug
)
n_trades = results["n_trades"]
trades = results.get('trades', [])
wins = [1 for t in trades if t['exit'] is not None and t['exit'] > t['entry']]
n_winning_trades = len(wins)
total_profit = sum(trade['profit_pct'] for trade in trades)
total_loss = sum(-trade['profit_pct'] for trade in trades if trade['profit_pct'] < 0)
win_rate = n_winning_trades / n_trades if n_trades > 0 else 0
avg_trade = total_profit / n_trades if n_trades > 0 else 0
profit_ratio = total_profit / total_loss if total_loss > 0 else float('inf')
cumulative_profit = 0
max_drawdown = 0
peak = 0
for trade in trades:
cumulative_profit += trade['profit_pct']
if cumulative_profit > peak:
peak = cumulative_profit
drawdown = peak - cumulative_profit
if drawdown > max_drawdown:
max_drawdown = drawdown
final_usd = initial_usd
for trade in trades:
final_usd *= (1 + trade['profit_pct'])
row = {
"timeframe": rule_name,
"stop_loss_pct": stop_loss_pct,
"n_trades": n_trades,
"n_stop_loss": sum(1 for trade in trades if 'type' in trade and trade['type'] == 'STOP'),
"win_rate": win_rate,
"max_drawdown": max_drawdown,
"avg_trade": avg_trade,
"total_profit": total_profit,
"total_loss": total_loss,
"profit_ratio": profit_ratio,
"initial_usd": initial_usd,
"final_usd": final_usd,
}
results_rows.append(row)
for trade in trades:
trade_rows.append({
"timeframe": rule_name,
"stop_loss_pct": stop_loss_pct,
"entry_time": trade.get("entry_time"),
"exit_time": trade.get("exit_time"),
"entry_price": trade.get("entry"),
"exit_price": trade.get("exit"),
"profit_pct": trade.get("profit_pct"),
"type": trade.get("type", ""),
})
logging.info(f"Timeframe: {rule_name}, Stop Loss: {stop_loss_pct}, Trades: {n_trades}")
if debug:
for trade in trades:
if trade['type'] == 'STOP':
print(trade)
for trade in trades:
if trade['profit_pct'] < -0.09: # or whatever is close to -0.10
print("Large loss trade:", trade)
return results_rows, trade_rows
def process_timeframe(timeframe_info, debug=False):
"""Process a single (timeframe, stop_loss_pct) combination (no monthly split)"""
rule, data_1min, stop_loss_pct, initial_usd = timeframe_info
if rule == "1T":
df = data_1min.copy()
else:
df = data_1min.resample(rule).agg({
'open': 'first',
'high': 'max',
'low': 'min',
'close': 'last',
'volume': 'sum'
}).dropna()
df = df.reset_index()
# Only process one stop loss
results_rows, all_trade_rows = process_timeframe_data(data_1min, df, [stop_loss_pct], rule, initial_usd, debug=debug)
return results_rows, all_trade_rows
def aggregate_results(all_rows):
"""Aggregate results per stop_loss_pct and per rule (timeframe)"""
from collections import defaultdict
grouped = defaultdict(list)
for row in all_rows:
key = (row['timeframe'], row['stop_loss_pct'])
grouped[key].append(row)
summary_rows = []
for (rule, stop_loss_pct), rows in grouped.items():
n_months = len(rows)
total_trades = sum(r['n_trades'] for r in rows)
total_stop_loss = sum(r['n_stop_loss'] for r in rows)
avg_win_rate = np.mean([r['win_rate'] for r in rows])
avg_max_drawdown = np.mean([r['max_drawdown'] for r in rows])
avg_avg_trade = np.mean([r['avg_trade'] for r in rows])
avg_profit_ratio = np.mean([r['profit_ratio'] for r in rows])
# Calculate final USD
final_usd = np.mean([r.get('final_usd', initial_usd) for r in rows])
summary_rows.append({
"timeframe": rule,
"stop_loss_pct": stop_loss_pct,
"n_trades": total_trades,
"n_stop_loss": total_stop_loss,
"win_rate": avg_win_rate,
"max_drawdown": avg_max_drawdown,
"avg_trade": avg_avg_trade,
"profit_ratio": avg_profit_ratio,
"initial_usd": initial_usd,
"final_usd": final_usd,
})
return summary_rows
def get_nearest_price(df, target_date):
if len(df) == 0:
return None, None
target_ts = pd.to_datetime(target_date)
nearest_idx = df.index.get_indexer([target_ts], method='nearest')[0]
nearest_time = df.index[nearest_idx]
price = df.iloc[nearest_idx]['close']
return nearest_time, price
if __name__ == "__main__":
# Configuration
# start_date = '2022-01-01'
# stop_date = '2023-01-01'
start_date = '2024-05-15'
stop_date = '2025-05-15'
initial_usd = 10000
debug = False
timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M")
storage = Storage(logging=logging)
system_utils = SystemUtils(logging=logging)
timeframes = ["1D"]
stop_loss_pcts = [0.01, 0.02, 0.03]
# Load data once
data_1min = storage.load_data('btcusd_1-min_data.csv', start_date, stop_date)
nearest_start_time, start_price = get_nearest_price(data_1min, start_date)
nearest_stop_time, stop_price = get_nearest_price(data_1min, stop_date)
logging.info(f"Price at start_date ({start_date}) [nearest timestamp: {nearest_start_time}]: {start_price}")
logging.info(f"Price at stop_date ({stop_date}) [nearest timestamp: {nearest_stop_time}]: {stop_price}")
tasks = [
(name, data_1min, stop_loss_pct, initial_usd)
for name in timeframes
for stop_loss_pct in stop_loss_pcts
]
workers = system_utils.get_optimal_workers()
# Start the background batch pusher
# spreadsheet_name = "GlimBit Backtest Results"
# batch_pusher = GSheetBatchPusher(results_queue, timestamp, spreadsheet_name, interval=65)
# batch_pusher.start()
# Process tasks with optimized concurrency
with concurrent.futures.ProcessPoolExecutor(max_workers=workers) as executor:
futures = {executor.submit(process_timeframe, task, debug): task for task in tasks}
all_results_rows = []
all_trade_rows = []
for future in concurrent.futures.as_completed(futures):
results, trades = future.result()
if results or trades:
all_results_rows.extend(results)
all_trade_rows.extend(trades)
# results_queue.put((results, trades)) # Enqueue for batch update
# After all tasks, flush any remaining updates
# batch_pusher.stop()
# batch_pusher.join()
# Ensure all batches are pushed, even after 429 errors
# while not results_queue.empty():
# logging.info("Waiting for Google Sheets quota to reset. Retrying batch push in 60 seconds...")
# time.sleep(65)
# batch_pusher.push_all()
# Write all results to a single CSV file
combined_filename = os.path.join(f"{timestamp}_backtest_combined.csv")
combined_fieldnames = [
"timeframe", "stop_loss_pct", "n_trades", "n_stop_loss", "win_rate",
"max_drawdown", "avg_trade", "profit_ratio", "final_usd"
]
storage.write_results_combined(combined_filename, combined_fieldnames, all_results_rows)
# --- Add taxes to combined results CSV ---
# taxes = Taxes() # Default 20% tax rate
# taxed_filename = combined_filename.replace('.csv', '_taxed.csv')
# taxes.add_taxes_to_results_csv(combined_filename, taxed_filename, profit_col='total_profit')
# logging.info(f"Taxed results written to {taxed_filename}")
# --- Write trades to separate CSVs per timeframe and stop loss ---
# Collect all trades from each task (need to run tasks to collect trades)
# Since only all_results_rows is collected above, we need to also collect all trades.
# To do this, modify the above loop to collect all trades as well.
# But for now, let's assume you have a list all_trade_rows (list of dicts)
# If not, you need to collect it in the ProcessPoolExecutor loop above.
# --- BEGIN: Collect all trades from each task ---
# To do this, modify the ProcessPoolExecutor loop above:
# all_results_rows = []
# all_trade_rows = []
# ...
# for future in concurrent.futures.as_completed(futures):
# results, trades = future.result()
# if results or trades:
# all_results_rows.extend(results)
# all_trade_rows.extend(trades)
# --- END: Collect all trades from each task ---
# Now, group all_trade_rows by (timeframe, stop_loss_pct)
trades_fieldnames = [
"entry_time", "exit_time", "entry_price", "exit_price", "profit_pct", "type"
]
storage.write_trades(all_trade_rows, trades_fieldnames)