Cycles/cycles/IncStrategies/example_backtest.py

447 lines
16 KiB
Python

"""
Example usage of the Incremental Backtester.
This script demonstrates how to use the IncBacktester for various scenarios:
1. Single strategy backtesting
2. Multiple strategy comparison
3. Parameter optimization with multiprocessing
4. Custom analysis and result saving
5. Comprehensive result logging and action tracking
Run this script to see the backtester in action with real or synthetic data.
"""
import pandas as pd
import numpy as np
import logging
from datetime import datetime, timedelta
import os
from cycles.IncStrategies import (
IncBacktester, BacktestConfig, IncRandomStrategy
)
from cycles.utils.storage import Storage
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)
def ensure_results_directory():
"""Ensure the results directory exists."""
results_dir = "results"
if not os.path.exists(results_dir):
os.makedirs(results_dir)
logger.info(f"Created results directory: {results_dir}")
return results_dir
def create_sample_data(days: int = 30) -> pd.DataFrame:
"""
Create sample OHLCV data for demonstration.
Args:
days: Number of days of data to generate
Returns:
pd.DataFrame: Sample OHLCV data
"""
# Create date range
end_date = datetime.now()
start_date = end_date - timedelta(days=days)
timestamps = pd.date_range(start=start_date, end=end_date, freq='1min')
# Generate realistic price data
np.random.seed(42)
n_points = len(timestamps)
# Start with a base price
base_price = 45000
# Generate price movements with trend and volatility
trend = np.linspace(0, 0.1, n_points) # Slight upward trend
volatility = np.random.normal(0, 0.002, n_points) # 0.2% volatility
# Calculate prices
log_returns = trend + volatility
prices = base_price * np.exp(np.cumsum(log_returns))
# Generate OHLCV data
data = []
for i, (timestamp, close_price) in enumerate(zip(timestamps, prices)):
# Generate realistic OHLC
intrabar_vol = close_price * 0.001
open_price = close_price + np.random.normal(0, intrabar_vol)
high_price = max(open_price, close_price) + abs(np.random.normal(0, intrabar_vol))
low_price = min(open_price, close_price) - abs(np.random.normal(0, intrabar_vol))
volume = np.random.uniform(50, 500)
data.append({
'open': open_price,
'high': high_price,
'low': low_price,
'close': close_price,
'volume': volume
})
df = pd.DataFrame(data, index=timestamps)
return df
def example_single_strategy():
"""Example 1: Single strategy backtesting with comprehensive results."""
print("\n" + "="*60)
print("EXAMPLE 1: Single Strategy Backtesting")
print("="*60)
# Create sample data
data = create_sample_data(days=7) # 1 week of data
# Save data
storage = Storage()
data_file = "sample_data_single.csv"
storage.save_data(data, data_file)
# Configure backtest
config = BacktestConfig(
data_file=data_file,
start_date=data.index[0].strftime("%Y-%m-%d"),
end_date=data.index[-1].strftime("%Y-%m-%d"),
initial_usd=10000,
stop_loss_pct=0.02,
take_profit_pct=0.05
)
# Create strategy
strategy = IncRandomStrategy(params={
"timeframe": "15min",
"entry_probability": 0.15,
"exit_probability": 0.2,
"random_seed": 42
})
# Run backtest
backtester = IncBacktester(config, storage)
results = backtester.run_single_strategy(strategy)
# Print results
print(f"\nResults:")
print(f" Strategy: {results['strategy_name']}")
print(f" Profit: {results['profit_ratio']*100:.2f}%")
print(f" Final Balance: ${results['final_usd']:,.2f}")
print(f" Trades: {results['n_trades']}")
print(f" Win Rate: {results['win_rate']*100:.1f}%")
print(f" Max Drawdown: {results['max_drawdown']*100:.2f}%")
# Save comprehensive results
backtester.save_comprehensive_results([results], "example_single_strategy")
# Cleanup
if os.path.exists(f"data/{data_file}"):
os.remove(f"data/{data_file}")
return results
def example_multiple_strategies():
"""Example 2: Multiple strategy comparison with comprehensive results."""
print("\n" + "="*60)
print("EXAMPLE 2: Multiple Strategy Comparison")
print("="*60)
# Create sample data
data = create_sample_data(days=10) # 10 days of data
# Save data
storage = Storage()
data_file = "sample_data_multiple.csv"
storage.save_data(data, data_file)
# Configure backtest
config = BacktestConfig(
data_file=data_file,
start_date=data.index[0].strftime("%Y-%m-%d"),
end_date=data.index[-1].strftime("%Y-%m-%d"),
initial_usd=10000,
stop_loss_pct=0.015
)
# Create multiple strategies with different parameters
strategies = [
IncRandomStrategy(params={
"timeframe": "5min",
"entry_probability": 0.1,
"exit_probability": 0.15,
"random_seed": 42
}),
IncRandomStrategy(params={
"timeframe": "15min",
"entry_probability": 0.12,
"exit_probability": 0.18,
"random_seed": 123
}),
IncRandomStrategy(params={
"timeframe": "30min",
"entry_probability": 0.08,
"exit_probability": 0.12,
"random_seed": 456
}),
IncRandomStrategy(params={
"timeframe": "1h",
"entry_probability": 0.06,
"exit_probability": 0.1,
"random_seed": 789
})
]
# Run backtest
backtester = IncBacktester(config, storage)
results = backtester.run_multiple_strategies(strategies)
# Print comparison
print(f"\nStrategy Comparison:")
print(f"{'Strategy':<20} {'Timeframe':<10} {'Profit %':<10} {'Trades':<8} {'Win Rate %':<12}")
print("-" * 70)
for i, result in enumerate(results):
if result.get("success", True):
timeframe = result['strategy_params']['timeframe']
profit = result['profit_ratio'] * 100
trades = result['n_trades']
win_rate = result['win_rate'] * 100
print(f"Strategy {i+1:<13} {timeframe:<10} {profit:<10.2f} {trades:<8} {win_rate:<12.1f}")
# Get summary statistics
summary = backtester.get_summary_statistics(results)
print(f"\nSummary Statistics:")
print(f" Best Profit: {summary['profit_ratio']['max']*100:.2f}%")
print(f" Worst Profit: {summary['profit_ratio']['min']*100:.2f}%")
print(f" Average Profit: {summary['profit_ratio']['mean']*100:.2f}%")
print(f" Profit Std Dev: {summary['profit_ratio']['std']*100:.2f}%")
# Save comprehensive results
backtester.save_comprehensive_results(results, "example_multiple_strategies", summary)
# Cleanup
if os.path.exists(f"data/{data_file}"):
os.remove(f"data/{data_file}")
return results, summary
def example_parameter_optimization():
"""Example 3: Parameter optimization with multiprocessing and comprehensive results."""
print("\n" + "="*60)
print("EXAMPLE 3: Parameter Optimization")
print("="*60)
# Create sample data
data = create_sample_data(days=5) # 5 days for faster optimization
# Save data
storage = Storage()
data_file = "sample_data_optimization.csv"
storage.save_data(data, data_file)
# Configure backtest
config = BacktestConfig(
data_file=data_file,
start_date=data.index[0].strftime("%Y-%m-%d"),
end_date=data.index[-1].strftime("%Y-%m-%d"),
initial_usd=10000
)
# Define parameter grids
strategy_param_grid = {
"timeframe": ["5min", "15min", "30min"],
"entry_probability": [0.08, 0.12, 0.16],
"exit_probability": [0.1, 0.15, 0.2],
"random_seed": [42] # Keep seed constant for fair comparison
}
trader_param_grid = {
"stop_loss_pct": [0.01, 0.015, 0.02],
"take_profit_pct": [0.0, 0.03, 0.05]
}
# Run optimization (will use SystemUtils to determine optimal workers)
backtester = IncBacktester(config, storage)
print(f"Starting optimization with {len(strategy_param_grid['timeframe']) * len(strategy_param_grid['entry_probability']) * len(strategy_param_grid['exit_probability']) * len(trader_param_grid['stop_loss_pct']) * len(trader_param_grid['take_profit_pct'])} combinations...")
results = backtester.optimize_parameters(
strategy_class=IncRandomStrategy,
param_grid=strategy_param_grid,
trader_param_grid=trader_param_grid,
max_workers=None # Use SystemUtils for optimal worker count
)
# Get summary
summary = backtester.get_summary_statistics(results)
# Print optimization results
print(f"\nOptimization Results:")
print(f" Total Combinations: {summary['total_runs']}")
print(f" Successful Runs: {summary['successful_runs']}")
print(f" Failed Runs: {summary['failed_runs']}")
if summary['successful_runs'] > 0:
print(f" Best Profit: {summary['profit_ratio']['max']*100:.2f}%")
print(f" Worst Profit: {summary['profit_ratio']['min']*100:.2f}%")
print(f" Average Profit: {summary['profit_ratio']['mean']*100:.2f}%")
# Show top 3 configurations
valid_results = [r for r in results if r.get("success", True)]
valid_results.sort(key=lambda x: x["profit_ratio"], reverse=True)
print(f"\nTop 3 Configurations:")
for i, result in enumerate(valid_results[:3]):
print(f" {i+1}. Profit: {result['profit_ratio']*100:.2f}% | "
f"Timeframe: {result['strategy_params']['timeframe']} | "
f"Entry Prob: {result['strategy_params']['entry_probability']} | "
f"Stop Loss: {result['trader_params']['stop_loss_pct']*100:.1f}%")
# Save comprehensive results
backtester.save_comprehensive_results(results, "example_parameter_optimization", summary)
# Cleanup
if os.path.exists(f"data/{data_file}"):
os.remove(f"data/{data_file}")
return results, summary
def example_custom_analysis():
"""Example 4: Custom analysis with detailed result examination."""
print("\n" + "="*60)
print("EXAMPLE 4: Custom Analysis")
print("="*60)
# Create sample data with more volatility for interesting results
data = create_sample_data(days=14) # 2 weeks
# Save data
storage = Storage()
data_file = "sample_data_analysis.csv"
storage.save_data(data, data_file)
# Configure backtest
config = BacktestConfig(
data_file=data_file,
start_date=data.index[0].strftime("%Y-%m-%d"),
end_date=data.index[-1].strftime("%Y-%m-%d"),
initial_usd=25000, # Larger starting capital
stop_loss_pct=0.025,
take_profit_pct=0.04
)
# Create strategy with specific parameters for analysis
strategy = IncRandomStrategy(params={
"timeframe": "30min",
"entry_probability": 0.1,
"exit_probability": 0.15,
"random_seed": 42
})
# Run backtest
backtester = IncBacktester(config, storage)
results = backtester.run_single_strategy(strategy)
# Detailed analysis
print(f"\nDetailed Analysis:")
print(f" Strategy: {results['strategy_name']}")
print(f" Timeframe: {results['strategy_params']['timeframe']}")
print(f" Data Period: {config.start_date} to {config.end_date}")
print(f" Data Points: {results['data_points']:,}")
print(f" Processing Time: {results['backtest_duration_seconds']:.2f}s")
print(f"\nPerformance Metrics:")
print(f" Initial Capital: ${results['initial_usd']:,.2f}")
print(f" Final Balance: ${results['final_usd']:,.2f}")
print(f" Total Return: {results['profit_ratio']*100:.2f}%")
print(f" Total Trades: {results['n_trades']}")
if results['n_trades'] > 0:
print(f" Win Rate: {results['win_rate']*100:.1f}%")
print(f" Average Trade: ${results['avg_trade']:.2f}")
print(f" Max Drawdown: {results['max_drawdown']*100:.2f}%")
print(f" Total Fees: ${results['total_fees_usd']:.2f}")
# Calculate additional metrics
days_traded = (pd.to_datetime(config.end_date) - pd.to_datetime(config.start_date)).days
annualized_return = (1 + results['profit_ratio']) ** (365 / days_traded) - 1
print(f" Annualized Return: {annualized_return*100:.2f}%")
# Risk metrics
if results['max_drawdown'] > 0:
calmar_ratio = annualized_return / results['max_drawdown']
print(f" Calmar Ratio: {calmar_ratio:.2f}")
# Save comprehensive results with custom analysis
backtester.save_comprehensive_results([results], "example_custom_analysis")
# Cleanup
if os.path.exists(f"data/{data_file}"):
os.remove(f"data/{data_file}")
return results
def main():
"""Run all examples."""
print("Incremental Backtester Examples")
print("="*60)
print("This script demonstrates various features of the IncBacktester:")
print("1. Single strategy backtesting")
print("2. Multiple strategy comparison")
print("3. Parameter optimization with multiprocessing")
print("4. Custom analysis and metrics")
print("5. Comprehensive result saving and action logging")
# Ensure results directory exists
ensure_results_directory()
try:
# Run all examples
single_results = example_single_strategy()
multiple_results, multiple_summary = example_multiple_strategies()
optimization_results, optimization_summary = example_parameter_optimization()
analysis_results = example_custom_analysis()
print("\n" + "="*60)
print("ALL EXAMPLES COMPLETED SUCCESSFULLY!")
print("="*60)
print("\n📊 Comprehensive results have been saved to the 'results' directory.")
print("Each example generated multiple files:")
print(" 📋 Summary JSON with session info and statistics")
print(" 📈 Detailed CSV with all backtest results")
print(" 📝 Action log JSON with all operations performed")
print(" 📁 Individual strategy JSON files with trades and details")
print(" 🗂️ Master index JSON for easy navigation")
print(f"\n🎯 Key Insights:")
print(f" • Single strategy achieved {single_results['profit_ratio']*100:.2f}% return")
print(f" • Multiple strategies: best {multiple_summary['profit_ratio']['max']*100:.2f}%, worst {multiple_summary['profit_ratio']['min']*100:.2f}%")
print(f" • Optimization tested {optimization_summary['total_runs']} combinations")
print(f" • Custom analysis provided detailed risk metrics")
print(f"\n🔧 System Performance:")
print(f" • Used SystemUtils for optimal CPU core utilization")
print(f" • All actions logged for reproducibility")
print(f" • Results saved in multiple formats for analysis")
print(f"\n✅ The incremental backtester is ready for production use!")
except Exception as e:
logger.error(f"Example failed: {e}")
print(f"\nError: {e}")
import traceback
traceback.print_exc()
if __name__ == "__main__":
main()