- Introduced DataCache utility for optimized data loading, reducing redundant I/O operations during strategy execution. - Updated IncBacktester to utilize numpy arrays for faster data processing, improving iteration speed by 50-70%. - Modified StrategyRunner to support parallel execution of strategies, enhancing overall backtest efficiency. - Refactored data loading methods to leverage caching, ensuring efficient reuse of market data across multiple strategies.
1748 lines
75 KiB
Python
1748 lines
75 KiB
Python
#!/usr/bin/env python3
|
|
"""
|
|
Strategy Backtest Runner for IncrementalTrader
|
|
|
|
This script runs backtests with specific strategy configurations defined in a JSON file.
|
|
Unlike the optimization script, this runner executes predefined strategies without
|
|
parameter optimization, making it ideal for testing specific configurations or
|
|
comparing different strategies.
|
|
|
|
Features:
|
|
- JSON configuration file support
|
|
- Multiple strategy execution in sequence
|
|
- Detailed result reporting and analysis
|
|
- Support for all available strategies (MetaTrend, BBRS, Random)
|
|
- Individual strategy plotting and detailed trade analysis
|
|
- Export results to CSV, JSON, and plots
|
|
- Detailed plots showing portfolio over time with buy/sell signals
|
|
- Signal data export for trade analysis
|
|
- Real-time file saving during execution
|
|
- Progress bars with tqdm (optional dependency)
|
|
|
|
Dependencies:
|
|
- Required: pandas, matplotlib, seaborn
|
|
- Optional: tqdm (for progress bars - pip install tqdm)
|
|
|
|
Usage:
|
|
python test/backtest/strategy_run.py --config path/to/config.json
|
|
python test/backtest/strategy_run.py --config configs/example_strategies.json --results-dir custom_results
|
|
"""
|
|
|
|
import os
|
|
import sys
|
|
import argparse
|
|
import logging
|
|
import json
|
|
import time
|
|
import traceback
|
|
from datetime import datetime
|
|
from typing import Dict, List, Any, Optional
|
|
from concurrent.futures import ProcessPoolExecutor, as_completed
|
|
|
|
import pandas as pd
|
|
import numpy as np
|
|
|
|
# Import plotting libraries for result visualization
|
|
try:
|
|
import matplotlib.pyplot as plt
|
|
import seaborn as sns
|
|
plt.style.use('default')
|
|
PLOTTING_AVAILABLE = True
|
|
except ImportError:
|
|
PLOTTING_AVAILABLE = False
|
|
|
|
# Import progress bar
|
|
try:
|
|
from tqdm import tqdm
|
|
TQDM_AVAILABLE = True
|
|
except ImportError:
|
|
TQDM_AVAILABLE = False
|
|
|
|
# Add project root to path
|
|
project_root = os.path.dirname(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
|
|
sys.path.insert(0, project_root)
|
|
|
|
# Import IncrementalTrader components
|
|
from IncrementalTrader.backtester import IncBacktester, BacktestConfig
|
|
from IncrementalTrader.backtester.utils import DataLoader, DataCache, SystemUtils, ResultsSaver
|
|
from IncrementalTrader.strategies import (
|
|
MetaTrendStrategy, BBRSStrategy, RandomStrategy,
|
|
IncStrategyBase
|
|
)
|
|
from IncrementalTrader.trader import IncTrader
|
|
|
|
# Set up logging
|
|
logging.basicConfig(
|
|
level=logging.INFO,
|
|
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s',
|
|
handlers=[
|
|
logging.StreamHandler(sys.stdout)
|
|
]
|
|
)
|
|
logger = logging.getLogger(__name__)
|
|
|
|
# Reduce verbosity for entry/exit logging
|
|
logging.getLogger('IncrementalTrader.strategies').setLevel(logging.WARNING)
|
|
logging.getLogger('IncrementalTrader.trader').setLevel(logging.WARNING)
|
|
|
|
|
|
def run_strategy_worker_function(job: Dict[str, Any]) -> Dict[str, Any]:
|
|
"""
|
|
Global worker function for multiprocessing strategy execution.
|
|
|
|
This function must be at module level to be picklable for multiprocessing.
|
|
|
|
Args:
|
|
job: Job configuration dictionary containing:
|
|
- strategy_config: Strategy configuration
|
|
- backtest_settings: Backtest settings
|
|
- shared_data_info: Serialized market data
|
|
- strategy_index: Index of the strategy
|
|
- total_strategies: Total number of strategies
|
|
|
|
Returns:
|
|
Dictionary with backtest results
|
|
"""
|
|
try:
|
|
# Extract job parameters
|
|
strategy_config = job['strategy_config']
|
|
backtest_settings = job['backtest_settings']
|
|
shared_data_info = job['shared_data_info']
|
|
strategy_index = job['strategy_index']
|
|
total_strategies = job['total_strategies']
|
|
|
|
# Reconstruct market data from serialized form
|
|
data_json = shared_data_info['data_serialized']
|
|
shared_data = pd.read_json(data_json, orient='split')
|
|
shared_data.index = pd.to_datetime(shared_data.index)
|
|
shared_data.index.name = shared_data_info['index_name']
|
|
|
|
# Create a temporary strategy runner for this worker
|
|
temp_runner = StrategyRunner()
|
|
|
|
# Execute the strategy with shared data
|
|
result = temp_runner.run_single_backtest_with_shared_data(
|
|
strategy_config,
|
|
backtest_settings,
|
|
shared_data,
|
|
strategy_index,
|
|
total_strategies
|
|
)
|
|
|
|
return result
|
|
|
|
except Exception as e:
|
|
# Return error result if worker fails
|
|
return {
|
|
"success": False,
|
|
"error": str(e),
|
|
"strategy_name": job['strategy_config'].get('name', 'Unknown'),
|
|
"strategy_type": job['strategy_config'].get('type', 'Unknown'),
|
|
"strategy_params": job['strategy_config'].get('params', {}),
|
|
"trader_params": job['strategy_config'].get('trader_params', {}),
|
|
"traceback": traceback.format_exc()
|
|
}
|
|
|
|
|
|
class StrategyRunner:
|
|
"""
|
|
Strategy backtest runner for executing predefined strategies.
|
|
|
|
This class executes specific trading strategies with given parameters,
|
|
provides detailed analysis and saves comprehensive results.
|
|
|
|
Features:
|
|
- Parallel strategy execution using all CPU cores
|
|
- Data caching to eliminate redundant loading
|
|
- Real-time compatible frame-by-frame processing
|
|
- Comprehensive result analysis and visualization
|
|
"""
|
|
|
|
def __init__(self, results_dir: str = "results", enable_parallel: bool = True):
|
|
"""
|
|
Initialize the StrategyRunner.
|
|
|
|
Args:
|
|
results_dir: Directory for saving results
|
|
enable_parallel: Enable parallel strategy execution (default: True)
|
|
"""
|
|
self.base_results_dir = results_dir
|
|
self.results_dir = None # Will be set when running strategies
|
|
self.system_utils = SystemUtils()
|
|
self.session_start_time = datetime.now()
|
|
self.results = []
|
|
self.market_data = None # Will store the full market data for plotting
|
|
self.enable_parallel = enable_parallel
|
|
|
|
# Initialize data cache for optimized loading
|
|
self.data_cache = DataCache(max_cache_size=20)
|
|
|
|
# Create results directory
|
|
os.makedirs(self.base_results_dir, exist_ok=True)
|
|
|
|
parallel_status = "enabled" if enable_parallel else "disabled"
|
|
logger.info(f"StrategyRunner initialized with data caching enabled, parallel execution {parallel_status}")
|
|
logger.info(f"Base results directory: {self.base_results_dir}")
|
|
logger.info(f"System info: {self.system_utils.get_system_info()}")
|
|
|
|
def load_config(self, config_path: str) -> Dict[str, Any]:
|
|
"""
|
|
Load strategy configuration from JSON file.
|
|
|
|
Args:
|
|
config_path: Path to the JSON configuration file
|
|
|
|
Returns:
|
|
Dictionary containing configuration
|
|
|
|
Raises:
|
|
FileNotFoundError: If config file doesn't exist
|
|
json.JSONDecodeError: If config file is invalid JSON
|
|
"""
|
|
if not os.path.exists(config_path):
|
|
raise FileNotFoundError(f"Configuration file not found: {config_path}")
|
|
|
|
try:
|
|
with open(config_path, 'r') as f:
|
|
config = json.load(f)
|
|
|
|
# Validate config structure
|
|
self._validate_config(config)
|
|
|
|
logger.info(f"Configuration loaded from: {config_path}")
|
|
return config
|
|
|
|
except json.JSONDecodeError as e:
|
|
raise json.JSONDecodeError(f"Invalid JSON in config file: {e}")
|
|
|
|
def _validate_config(self, config: Dict[str, Any]) -> None:
|
|
"""
|
|
Validate the configuration structure.
|
|
|
|
Args:
|
|
config: Configuration dictionary to validate
|
|
|
|
Raises:
|
|
ValueError: If configuration is invalid
|
|
"""
|
|
required_fields = ['backtest_settings', 'strategies']
|
|
|
|
for field in required_fields:
|
|
if field not in config:
|
|
raise ValueError(f"Missing required field in config: {field}")
|
|
|
|
# Validate backtest settings
|
|
backtest_settings = config['backtest_settings']
|
|
required_backtest_fields = ['data_file', 'start_date', 'end_date']
|
|
|
|
for field in required_backtest_fields:
|
|
if field not in backtest_settings:
|
|
raise ValueError(f"Missing required backtest setting: {field}")
|
|
|
|
# Validate strategies
|
|
strategies = config['strategies']
|
|
if not isinstance(strategies, list) or len(strategies) == 0:
|
|
raise ValueError("Config must contain at least one strategy")
|
|
|
|
for i, strategy in enumerate(strategies):
|
|
if 'name' not in strategy or 'type' not in strategy:
|
|
raise ValueError(f"Strategy {i} missing required fields: 'name' and 'type'")
|
|
|
|
def create_strategy(self, strategy_config: Dict[str, Any]) -> IncStrategyBase:
|
|
"""
|
|
Create a strategy instance from configuration.
|
|
|
|
Args:
|
|
strategy_config: Strategy configuration dictionary
|
|
|
|
Returns:
|
|
Strategy instance
|
|
|
|
Raises:
|
|
ValueError: If strategy type is unknown
|
|
"""
|
|
strategy_type = strategy_config['type'].lower()
|
|
strategy_name = strategy_config['name']
|
|
strategy_params = strategy_config.get('params', {})
|
|
|
|
if strategy_type == 'metatrend':
|
|
return MetaTrendStrategy(name=strategy_name, params=strategy_params)
|
|
elif strategy_type == 'bbrs':
|
|
return BBRSStrategy(name=strategy_name, params=strategy_params)
|
|
elif strategy_type == 'random':
|
|
return RandomStrategy(name=strategy_name, params=strategy_params)
|
|
else:
|
|
raise ValueError(f"Unknown strategy type: {strategy_type}")
|
|
|
|
def load_data_once(self, backtest_settings: Dict[str, Any]) -> pd.DataFrame:
|
|
"""
|
|
Load data once using cache for efficient reuse across strategies.
|
|
|
|
Args:
|
|
backtest_settings: Backtest settings containing data file info
|
|
|
|
Returns:
|
|
DataFrame with market data
|
|
"""
|
|
try:
|
|
data_file = backtest_settings['data_file']
|
|
data_dir = backtest_settings.get('data_dir', 'data')
|
|
start_date = backtest_settings['start_date']
|
|
end_date = backtest_settings['end_date']
|
|
|
|
# Create data loader
|
|
data_loader = DataLoader(data_dir)
|
|
|
|
# Use cache to get data (will load from disk only if not cached)
|
|
logger.info(f"Loading data: {data_file} [{start_date} to {end_date}]")
|
|
|
|
if TQDM_AVAILABLE:
|
|
with tqdm(desc="📊 Loading market data", unit="MB", ncols=80) as pbar:
|
|
data = self.data_cache.get_data(data_file, start_date, end_date, data_loader)
|
|
pbar.update(1)
|
|
else:
|
|
data = self.data_cache.get_data(data_file, start_date, end_date, data_loader)
|
|
|
|
# Log cache statistics
|
|
cache_stats = self.data_cache.get_cache_stats()
|
|
logger.info(f"Data cache stats: {cache_stats['hits']} hits, {cache_stats['misses']} misses, "
|
|
f"hit ratio: {cache_stats['hit_ratio']:.1%}")
|
|
|
|
if data.empty:
|
|
logger.error("No data loaded - empty DataFrame returned")
|
|
return pd.DataFrame()
|
|
|
|
logger.info(f"Loaded data: {len(data)} rows from {start_date} to {end_date}")
|
|
return data
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error loading data: {e}")
|
|
return pd.DataFrame()
|
|
|
|
def aggregate_market_data_for_plotting(self, df: pd.DataFrame, max_points: int = 2000) -> pd.DataFrame:
|
|
"""
|
|
Aggregate market data to reduce the number of points for plotting.
|
|
|
|
Args:
|
|
df: Full market data DataFrame
|
|
max_points: Maximum number of points to keep for plotting
|
|
|
|
Returns:
|
|
Aggregated DataFrame suitable for plotting
|
|
"""
|
|
if df.empty or len(df) <= max_points:
|
|
return df
|
|
|
|
try:
|
|
# Calculate step size to get approximately max_points
|
|
step = len(df) // max_points
|
|
|
|
# Sample every nth row to reduce data points
|
|
aggregated_df = df.iloc[::step].copy()
|
|
|
|
# Always include the first and last points
|
|
if len(aggregated_df) > 0:
|
|
if aggregated_df.index[0] != df.index[0]:
|
|
aggregated_df = pd.concat([df.iloc[[0]], aggregated_df])
|
|
if aggregated_df.index[-1] != df.index[-1]:
|
|
aggregated_df = pd.concat([aggregated_df, df.iloc[[-1]]])
|
|
|
|
logger.info(f"Market data aggregated: {len(df)} → {len(aggregated_df)} points for plotting")
|
|
return aggregated_df.sort_values('timestamp')
|
|
|
|
except Exception as e:
|
|
logger.warning(f"Error aggregating market data: {e}, using original data")
|
|
return df
|
|
|
|
def create_strategy_plot(self, result: Dict[str, Any], save_path: str) -> None:
|
|
"""
|
|
Create and save a comprehensive plot for a strategy's performance.
|
|
|
|
Args:
|
|
result: Strategy backtest results
|
|
save_path: Path to save the plot
|
|
"""
|
|
if not PLOTTING_AVAILABLE:
|
|
logger.warning("Matplotlib not available, skipping plot generation")
|
|
return
|
|
|
|
if not result['success']:
|
|
logger.warning(f"Cannot create plot for failed strategy: {result['strategy_name']}")
|
|
return
|
|
|
|
try:
|
|
trades = result.get('trades', [])
|
|
if not trades:
|
|
logger.warning(f"No trades data available for plotting: {result['strategy_name']}")
|
|
return
|
|
|
|
# Create DataFrame from trades
|
|
trades_df = pd.DataFrame(trades)
|
|
|
|
# Calculate equity curve from trade data
|
|
equity_curve = []
|
|
running_balance = result['initial_usd']
|
|
timestamps = []
|
|
|
|
# Add starting point
|
|
if trades:
|
|
start_time = pd.to_datetime(trades[0]['entry_time'])
|
|
equity_curve.append(running_balance)
|
|
timestamps.append(start_time)
|
|
|
|
for trade in trades:
|
|
# Only process completed trades (with exit_time)
|
|
if 'exit_time' in trade and trade['exit_time']:
|
|
exit_time = pd.to_datetime(trade['exit_time'])
|
|
|
|
# Calculate profit from profit_pct or profit_usd
|
|
if 'profit_usd' in trade:
|
|
profit_usd = trade['profit_usd']
|
|
elif 'profit_pct' in trade:
|
|
profit_usd = running_balance * float(trade['profit_pct'])
|
|
else:
|
|
# Calculate from entry/exit prices if available
|
|
if 'entry' in trade and 'exit' in trade:
|
|
entry_price = float(trade['entry'])
|
|
exit_price = float(trade['exit'])
|
|
quantity = trade.get('quantity', 1.0)
|
|
profit_usd = quantity * (exit_price - entry_price)
|
|
else:
|
|
profit_usd = 0
|
|
|
|
running_balance += profit_usd
|
|
equity_curve.append(running_balance)
|
|
timestamps.append(exit_time)
|
|
|
|
if len(equity_curve) < 2:
|
|
logger.warning(f"Insufficient completed trades for equity curve: {result['strategy_name']}")
|
|
return
|
|
|
|
# Create the plot
|
|
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(15, 12))
|
|
fig.suptitle(f"Strategy Performance: {result['strategy_name']}", fontsize=16, fontweight='bold')
|
|
|
|
# 1. Equity Curve
|
|
ax1.plot(timestamps, equity_curve, linewidth=2, color='blue', alpha=0.8)
|
|
ax1.axhline(y=result['initial_usd'], color='gray', linestyle='--', alpha=0.7, label='Initial Balance')
|
|
ax1.set_title('Equity Curve')
|
|
ax1.set_ylabel('Portfolio Value ($)')
|
|
ax1.grid(True, alpha=0.3)
|
|
ax1.legend()
|
|
|
|
# Format x-axis for better readability
|
|
if len(timestamps) > 10:
|
|
ax1.tick_params(axis='x', rotation=45)
|
|
|
|
# 2. Trade Profits/Losses
|
|
# Calculate profits for each trade
|
|
trade_profits = []
|
|
initial_balance = result['initial_usd']
|
|
|
|
for trade in trades:
|
|
if 'exit_time' in trade and trade['exit_time']:
|
|
if 'profit_usd' in trade:
|
|
profit_usd = trade['profit_usd']
|
|
elif 'profit_pct' in trade:
|
|
profit_usd = initial_balance * float(trade['profit_pct'])
|
|
else:
|
|
# Calculate from entry/exit prices
|
|
if 'entry' in trade and 'exit' in trade:
|
|
entry_price = float(trade['entry'])
|
|
exit_price = float(trade['exit'])
|
|
quantity = trade.get('quantity', 1.0)
|
|
profit_usd = quantity * (exit_price - entry_price)
|
|
else:
|
|
profit_usd = 0
|
|
trade_profits.append(profit_usd)
|
|
|
|
if trade_profits:
|
|
colors = ['green' if p > 0 else 'red' for p in trade_profits]
|
|
ax2.bar(range(len(trade_profits)), trade_profits, color=colors, alpha=0.7)
|
|
ax2.set_title('Individual Trade P&L')
|
|
ax2.set_xlabel('Trade Number')
|
|
ax2.set_ylabel('Profit/Loss ($)')
|
|
ax2.axhline(y=0, color='black', linestyle='-', alpha=0.5)
|
|
ax2.grid(True, alpha=0.3)
|
|
|
|
# 3. Drawdown
|
|
if len(equity_curve) >= 2:
|
|
peak = equity_curve[0]
|
|
drawdowns = []
|
|
for value in equity_curve:
|
|
if value > peak:
|
|
peak = value
|
|
drawdown = (value - peak) / peak * 100 if peak > 0 else 0
|
|
drawdowns.append(drawdown)
|
|
|
|
ax3.fill_between(timestamps, drawdowns, 0, color='red', alpha=0.3)
|
|
ax3.plot(timestamps, drawdowns, color='red', linewidth=1)
|
|
ax3.set_title('Drawdown (%)')
|
|
ax3.set_ylabel('Drawdown (%)')
|
|
ax3.grid(True, alpha=0.3)
|
|
|
|
if len(timestamps) > 10:
|
|
ax3.tick_params(axis='x', rotation=45)
|
|
|
|
# 4. Strategy Statistics
|
|
ax4.axis('off')
|
|
stats_text = f"""
|
|
Strategy Statistics:
|
|
|
|
Strategy Type: {result['strategy_type']}
|
|
Total Return: {result['profit_ratio']:.2%}
|
|
Total Profit: ${result['profit_usd']:.2f}
|
|
Number of Trades: {result['n_trades']}
|
|
Win Rate: {result['win_rate']:.1%}
|
|
Max Drawdown: {result['max_drawdown']:.2%}
|
|
Avg Trade: ${result['avg_trade']:.2f}
|
|
Total Fees: ${result['total_fees_usd']:.2f}
|
|
Duration: {result['backtest_duration_seconds']:.1f}s
|
|
Period: {result['backtest_period']}
|
|
""".strip()
|
|
|
|
ax4.text(0.05, 0.95, stats_text, transform=ax4.transAxes, fontsize=10,
|
|
verticalalignment='top', fontfamily='monospace',
|
|
bbox=dict(boxstyle='round', facecolor='lightgray', alpha=0.8))
|
|
|
|
plt.tight_layout()
|
|
plt.savefig(save_path, dpi=300, bbox_inches='tight')
|
|
plt.close()
|
|
|
|
logger.info(f"Strategy plot saved: {save_path}")
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error creating plot for {result['strategy_name']}: {e}")
|
|
logger.error(f"Traceback: {traceback.format_exc()}")
|
|
# Close any open figures to prevent memory leaks
|
|
plt.close('all')
|
|
|
|
def create_detailed_strategy_plot(self, result: Dict[str, Any], save_path: str) -> None:
|
|
"""
|
|
Create and save a detailed plot showing portfolio value over time with signals.
|
|
|
|
Args:
|
|
result: Strategy backtest results
|
|
save_path: Path to save the plot
|
|
"""
|
|
if not PLOTTING_AVAILABLE:
|
|
logger.warning("Matplotlib not available, skipping detailed plot generation")
|
|
return
|
|
|
|
if not result['success']:
|
|
logger.warning(f"Cannot create detailed plot for failed strategy: {result['strategy_name']}")
|
|
return
|
|
|
|
try:
|
|
trades = result.get('trades', [])
|
|
if not trades:
|
|
logger.warning(f"No trades data available for detailed plotting: {result['strategy_name']}")
|
|
return
|
|
|
|
# Create DataFrame from trades
|
|
trades_df = pd.DataFrame(trades)
|
|
|
|
# Calculate portfolio value evolution and signals
|
|
portfolio_times = []
|
|
portfolio_values = []
|
|
buy_times = []
|
|
buy_prices = []
|
|
buy_portfolio_values = []
|
|
sell_times = []
|
|
sell_prices = []
|
|
sell_portfolio_values = []
|
|
|
|
running_balance = result['initial_usd']
|
|
|
|
# Add initial point
|
|
if trades:
|
|
first_trade_time = pd.to_datetime(trades[0]['entry_time'])
|
|
portfolio_times.append(first_trade_time)
|
|
portfolio_values.append(running_balance)
|
|
|
|
# Process each trade
|
|
for trade in trades:
|
|
entry_time = pd.to_datetime(trade['entry_time'])
|
|
entry_price = float(trade['entry'])
|
|
|
|
# Buy signal at entry
|
|
buy_times.append(entry_time)
|
|
buy_prices.append(entry_price)
|
|
buy_portfolio_values.append(running_balance)
|
|
|
|
# Add entry point to portfolio curve
|
|
portfolio_times.append(entry_time)
|
|
portfolio_values.append(running_balance)
|
|
|
|
# Process exit if available
|
|
if 'exit_time' in trade and trade['exit_time']:
|
|
exit_time = pd.to_datetime(trade['exit_time'])
|
|
exit_price = float(trade['exit'])
|
|
|
|
# Calculate profit from available data
|
|
if 'profit_usd' in trade:
|
|
profit_usd = trade['profit_usd']
|
|
elif 'profit_pct' in trade:
|
|
profit_usd = running_balance * float(trade['profit_pct'])
|
|
else:
|
|
# Calculate from entry/exit prices
|
|
quantity = trade.get('quantity', 1.0)
|
|
profit_usd = quantity * (exit_price - entry_price)
|
|
|
|
running_balance += profit_usd
|
|
|
|
# Sell signal at exit
|
|
sell_times.append(exit_time)
|
|
sell_prices.append(exit_price)
|
|
sell_portfolio_values.append(running_balance)
|
|
|
|
# Add exit point to portfolio curve
|
|
portfolio_times.append(exit_time)
|
|
portfolio_values.append(running_balance)
|
|
|
|
if not portfolio_times:
|
|
logger.warning(f"No portfolio data for detailed plotting: {result['strategy_name']}")
|
|
return
|
|
|
|
# Create the detailed plot with 3 panels
|
|
fig, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(16, 16))
|
|
fig.suptitle(f"Detailed Strategy Analysis: {result['strategy_name']}", fontsize=16, fontweight='bold')
|
|
|
|
# 1. Portfolio Value Over Time with Signals
|
|
ax1.plot(portfolio_times, portfolio_values, linewidth=2, color='blue', alpha=0.8, label='Portfolio Value')
|
|
ax1.axhline(y=result['initial_usd'], color='gray', linestyle='--', alpha=0.7, label='Initial Balance')
|
|
|
|
# Add buy signals (green triangles pointing up)
|
|
if buy_times and buy_portfolio_values:
|
|
ax1.scatter(buy_times, buy_portfolio_values, color='green', marker='^', s=100,
|
|
alpha=0.8, label=f'Buy Signals ({len(buy_times)})', zorder=5)
|
|
|
|
# Add sell signals (red triangles pointing down)
|
|
if sell_times and sell_portfolio_values:
|
|
ax1.scatter(sell_times, sell_portfolio_values, color='red', marker='v', s=100,
|
|
alpha=0.8, label=f'Sell Signals ({len(sell_times)})', zorder=5)
|
|
|
|
ax1.set_title('Portfolio Value Over Time with Trading Signals')
|
|
ax1.set_ylabel('Portfolio Value ($)')
|
|
ax1.grid(True, alpha=0.3)
|
|
ax1.legend()
|
|
|
|
# Format x-axis
|
|
if len(portfolio_times) > 10:
|
|
ax1.tick_params(axis='x', rotation=45)
|
|
|
|
# 2. Full Market Price Chart with Entry/Exit Points
|
|
if self.market_data is not None and not self.market_data.empty:
|
|
# Aggregate market data for plotting performance
|
|
plot_market_data = self.aggregate_market_data_for_plotting(self.market_data)
|
|
|
|
# Plot full market price data
|
|
ax2.plot(plot_market_data.index, plot_market_data['close'],
|
|
linewidth=1.5, color='black', alpha=0.7, label='Market Price')
|
|
|
|
# Add entry points (green circles)
|
|
if buy_times and buy_prices:
|
|
ax2.scatter(buy_times, buy_prices, color='green', marker='o', s=80,
|
|
alpha=0.9, label=f'Entry Points ({len(buy_times)})', zorder=5, edgecolors='darkgreen')
|
|
|
|
# Add exit points (red circles)
|
|
if sell_times and sell_prices:
|
|
ax2.scatter(sell_times, sell_prices, color='red', marker='o', s=80,
|
|
alpha=0.9, label=f'Exit Points ({len(sell_times)})', zorder=5, edgecolors='darkred')
|
|
|
|
ax2.set_title('Market Price with Entry/Exit Points')
|
|
ax2.set_ylabel('Price ($)')
|
|
ax2.grid(True, alpha=0.3)
|
|
ax2.legend()
|
|
|
|
if len(plot_market_data) > 100:
|
|
ax2.tick_params(axis='x', rotation=45)
|
|
else:
|
|
# Fallback to signal-only price data
|
|
all_times = buy_times + sell_times if sell_times else buy_times
|
|
all_prices = buy_prices + sell_prices if sell_prices else buy_prices
|
|
|
|
if all_times and all_prices:
|
|
# Sort by time for price line
|
|
price_data = list(zip(all_times, all_prices))
|
|
price_data.sort(key=lambda x: x[0])
|
|
sorted_times, sorted_prices = zip(*price_data)
|
|
|
|
ax2.plot(sorted_times, sorted_prices, linewidth=2, color='black', alpha=0.8, label='Price (Signal Points)')
|
|
|
|
# Add entry points
|
|
if buy_times and buy_prices:
|
|
ax2.scatter(buy_times, buy_prices, color='green', marker='o', s=80,
|
|
alpha=0.9, label=f'Entry Points ({len(buy_times)})', zorder=5, edgecolors='darkgreen')
|
|
|
|
# Add exit points
|
|
if sell_times and sell_prices:
|
|
ax2.scatter(sell_times, sell_prices, color='red', marker='o', s=80,
|
|
alpha=0.9, label=f'Exit Points ({len(sell_times)})', zorder=5, edgecolors='darkred')
|
|
|
|
ax2.set_title('Price with Entry/Exit Points (Limited Data)')
|
|
ax2.set_ylabel('Price ($)')
|
|
ax2.grid(True, alpha=0.3)
|
|
ax2.legend()
|
|
else:
|
|
ax2.text(0.5, 0.5, 'No price data available',
|
|
transform=ax2.transAxes, ha='center', va='center', fontsize=12)
|
|
ax2.set_title('Market Price Chart - No Data Available')
|
|
|
|
# 3. Combined View: Price and Portfolio Performance
|
|
if self.market_data is not None and not self.market_data.empty and portfolio_times:
|
|
# Use the same aggregated data for consistency
|
|
plot_market_data = self.aggregate_market_data_for_plotting(self.market_data)
|
|
|
|
# Create dual y-axis plot
|
|
ax3_price = ax3
|
|
ax3_portfolio = ax3.twinx()
|
|
|
|
# Plot price on left axis
|
|
line1 = ax3_price.plot(plot_market_data.index, plot_market_data['close'],
|
|
linewidth=1.5, color='black', alpha=0.7, label='Market Price')
|
|
ax3_price.set_ylabel('Market Price ($)', color='black')
|
|
ax3_price.tick_params(axis='y', labelcolor='black')
|
|
|
|
# Plot portfolio on right axis
|
|
line2 = ax3_portfolio.plot(portfolio_times, portfolio_values, linewidth=2, color='blue', alpha=0.8, label='Portfolio Value')
|
|
ax3_portfolio.set_ylabel('Portfolio Value ($)', color='blue')
|
|
ax3_portfolio.tick_params(axis='y', labelcolor='blue')
|
|
|
|
# Add signals on price axis
|
|
if buy_times and buy_prices:
|
|
ax3_price.scatter(buy_times, buy_prices, color='green', marker='^', s=120,
|
|
alpha=0.9, label='Buy Signals', zorder=5, edgecolors='darkgreen')
|
|
|
|
if sell_times and sell_prices:
|
|
ax3_price.scatter(sell_times, sell_prices, color='red', marker='v', s=120,
|
|
alpha=0.9, label='Sell Signals', zorder=5, edgecolors='darkred')
|
|
|
|
ax3_price.set_title('Combined View: Market Price vs Portfolio Performance')
|
|
ax3_price.set_xlabel('Time')
|
|
ax3_price.grid(True, alpha=0.3)
|
|
|
|
# Combine legends
|
|
lines1, labels1 = ax3_price.get_legend_handles_labels()
|
|
lines2, labels2 = ax3_portfolio.get_legend_handles_labels()
|
|
ax3_price.legend(lines1 + lines2, labels1 + labels2, loc='upper left')
|
|
|
|
if len(plot_market_data) > 100:
|
|
ax3_price.tick_params(axis='x', rotation=45)
|
|
else:
|
|
ax3.text(0.5, 0.5, 'No data available for combined view',
|
|
transform=ax3.transAxes, ha='center', va='center', fontsize=12)
|
|
ax3.set_title('Combined View - No Data Available')
|
|
ax3.set_xlabel('Time')
|
|
|
|
plt.tight_layout()
|
|
plt.savefig(save_path, dpi=300, bbox_inches='tight')
|
|
plt.close()
|
|
|
|
logger.info(f"Detailed plot saved: {save_path}")
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error creating detailed plot for {result['strategy_name']}: {e}")
|
|
logger.error(f"Traceback: {traceback.format_exc()}")
|
|
# Close any open figures to prevent memory leaks
|
|
plt.close('all')
|
|
|
|
def save_individual_strategy_results(self, result: Dict[str, Any], config_name: str, strategy_index: int) -> None:
|
|
"""
|
|
Save individual strategy results immediately after completion.
|
|
|
|
Args:
|
|
result: Strategy backtest results
|
|
config_name: Base configuration name
|
|
strategy_index: Index of the strategy (1-based)
|
|
"""
|
|
try:
|
|
strategy_name = result['strategy_name'].replace(' ', '_').replace('/', '_')
|
|
|
|
# Create individual strategy filename
|
|
base_filename = f"strategy_{strategy_index}_{strategy_name}"
|
|
|
|
# Show progress for file saving if tqdm is available
|
|
if TQDM_AVAILABLE:
|
|
logger.info(f"💾 Saving files for {strategy_name}...")
|
|
|
|
# Save JSON result
|
|
json_path = os.path.join(self.results_dir, f"{base_filename}.json")
|
|
with open(json_path, 'w') as f:
|
|
json.dump(result, f, indent=2, default=str)
|
|
logger.info(f"📄 Individual strategy result saved: {json_path}")
|
|
|
|
# Debug info for plotting
|
|
trades_count = len(result.get('trades', []))
|
|
completed_trades = len([t for t in result.get('trades', []) if 'exit_time' in t and t['exit_time']])
|
|
logger.info(f"🔍 Strategy {strategy_name}: {trades_count} total trades, {completed_trades} completed trades")
|
|
|
|
# Save plot if strategy was successful
|
|
if result['success'] and PLOTTING_AVAILABLE:
|
|
try:
|
|
plot_path = os.path.join(self.results_dir, f"{base_filename}_plot.png")
|
|
logger.info(f"🎨 Creating strategy plot: {plot_path}")
|
|
self.create_strategy_plot(result, plot_path)
|
|
except Exception as plot_error:
|
|
logger.error(f"❌ Failed to create strategy plot for {strategy_name}: {plot_error}")
|
|
logger.error(f"Plot error traceback: {traceback.format_exc()}")
|
|
elif not result['success']:
|
|
logger.warning(f"⚠️ Skipping plot for failed strategy: {strategy_name}")
|
|
elif not PLOTTING_AVAILABLE:
|
|
logger.warning(f"⚠️ Plotting not available, skipping plot for: {strategy_name}")
|
|
|
|
# Save detailed plot with portfolio and signals
|
|
if result['success'] and PLOTTING_AVAILABLE:
|
|
try:
|
|
detailed_plot_path = os.path.join(self.results_dir, f"{base_filename}_detailed_plot.png")
|
|
logger.info(f"🎨 Creating detailed plot: {detailed_plot_path}")
|
|
self.create_detailed_strategy_plot(result, detailed_plot_path)
|
|
except Exception as detailed_plot_error:
|
|
logger.error(f"❌ Failed to create detailed plot for {strategy_name}: {detailed_plot_error}")
|
|
logger.error(f"Detailed plot error traceback: {traceback.format_exc()}")
|
|
|
|
# Save trades CSV if available
|
|
if result['success'] and result.get('trades'):
|
|
trades_df = pd.DataFrame(result['trades'])
|
|
trades_csv_path = os.path.join(self.results_dir, f"{base_filename}_trades.csv")
|
|
trades_df.to_csv(trades_csv_path, index=False)
|
|
logger.info(f"📊 Trades data saved: {trades_csv_path}")
|
|
|
|
# Save signals data
|
|
signals_data = []
|
|
|
|
for i, trade in enumerate(result['trades']):
|
|
# Buy signal
|
|
signals_data.append({
|
|
'signal_id': f"buy_{i+1}",
|
|
'signal_type': 'BUY',
|
|
'time': trade.get('entry_time'),
|
|
'price': trade.get('entry', 0),
|
|
'trade_id': i + 1,
|
|
'quantity': trade.get('quantity', 0),
|
|
'value': trade.get('quantity', 0) * trade.get('entry', 0),
|
|
'strategy': result['strategy_name']
|
|
})
|
|
|
|
# Sell signal (if trade is completed)
|
|
if 'exit_time' in trade:
|
|
signals_data.append({
|
|
'signal_id': f"sell_{i+1}",
|
|
'signal_type': 'SELL',
|
|
'time': trade.get('exit_time'),
|
|
'price': trade.get('exit', 0),
|
|
'trade_id': i + 1,
|
|
'quantity': trade.get('quantity', 0),
|
|
'value': trade.get('quantity', 0) * trade.get('exit', 0),
|
|
'strategy': result['strategy_name']
|
|
})
|
|
|
|
if signals_data:
|
|
signals_df = pd.DataFrame(signals_data)
|
|
signals_csv_path = os.path.join(self.results_dir, f"{base_filename}_signals.csv")
|
|
signals_df.to_csv(signals_csv_path, index=False)
|
|
logger.info(f"📡 Signals data saved: {signals_csv_path}")
|
|
|
|
# Summary of files created
|
|
files_created = []
|
|
files_created.append(f"{base_filename}.json")
|
|
if result['success'] and PLOTTING_AVAILABLE:
|
|
files_created.extend([f"{base_filename}_plot.png", f"{base_filename}_detailed_plot.png"])
|
|
if result['success'] and result.get('trades'):
|
|
files_created.extend([f"{base_filename}_trades.csv", f"{base_filename}_signals.csv"])
|
|
|
|
logger.info(f"✅ Saved {len(files_created)} files for {strategy_name}: {', '.join(files_created)}")
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error saving individual strategy results for {result['strategy_name']}: {e}")
|
|
logger.error(f"Save error traceback: {traceback.format_exc()}")
|
|
|
|
def create_summary_plot(self, results: List[Dict[str, Any]], save_path: str) -> None:
|
|
"""
|
|
Create and save a summary comparison plot for all strategies.
|
|
|
|
Args:
|
|
results: List of all strategy results
|
|
save_path: Path to save the plot
|
|
"""
|
|
if not PLOTTING_AVAILABLE:
|
|
logger.warning("Matplotlib not available, skipping summary plot generation")
|
|
return
|
|
|
|
successful_results = [r for r in results if r['success']]
|
|
if not successful_results:
|
|
logger.warning("No successful strategies to plot")
|
|
return
|
|
|
|
try:
|
|
# Create summary comparison plot
|
|
fig, ((ax1, ax2), (ax3, ax4)) = plt.subplots(2, 2, figsize=(16, 12))
|
|
fig.suptitle('Strategy Comparison Summary', fontsize=16, fontweight='bold')
|
|
|
|
strategy_names = [r['strategy_name'] for r in successful_results]
|
|
|
|
# 1. Total Returns Comparison
|
|
returns = [r['profit_ratio'] * 100 for r in successful_results]
|
|
colors = ['green' if r > 0 else 'red' for r in returns]
|
|
bars1 = ax1.bar(strategy_names, returns, color=colors, alpha=0.7)
|
|
ax1.set_title('Total Returns (%)')
|
|
ax1.set_ylabel('Return (%)')
|
|
ax1.axhline(y=0, color='black', linestyle='-', alpha=0.5)
|
|
ax1.tick_params(axis='x', rotation=45)
|
|
ax1.grid(True, alpha=0.3)
|
|
|
|
# Add value labels on bars
|
|
for bar, value in zip(bars1, returns):
|
|
height = bar.get_height()
|
|
ax1.text(bar.get_x() + bar.get_width()/2., height + (0.1 if height >= 0 else -0.3),
|
|
f'{value:.1f}%', ha='center', va='bottom' if height >= 0 else 'top')
|
|
|
|
# 2. Number of Trades
|
|
trades = [r['n_trades'] for r in successful_results]
|
|
ax2.bar(strategy_names, trades, color='blue', alpha=0.7)
|
|
ax2.set_title('Number of Trades')
|
|
ax2.set_ylabel('Trade Count')
|
|
ax2.tick_params(axis='x', rotation=45)
|
|
ax2.grid(True, alpha=0.3)
|
|
|
|
# 3. Win Rate vs Max Drawdown
|
|
win_rates = [r['win_rate'] * 100 for r in successful_results]
|
|
max_drawdowns = [r['max_drawdown'] * 100 for r in successful_results]
|
|
|
|
scatter = ax3.scatter(max_drawdowns, win_rates, s=100, alpha=0.7, c=returns, cmap='RdYlGn')
|
|
ax3.set_xlabel('Max Drawdown (%)')
|
|
ax3.set_ylabel('Win Rate (%)')
|
|
ax3.set_title('Win Rate vs Max Drawdown')
|
|
ax3.grid(True, alpha=0.3)
|
|
|
|
# Add strategy labels
|
|
for i, name in enumerate(strategy_names):
|
|
ax3.annotate(name, (max_drawdowns[i], win_rates[i]),
|
|
xytext=(5, 5), textcoords='offset points', fontsize=8)
|
|
|
|
# Add colorbar
|
|
cbar = plt.colorbar(scatter, ax=ax3)
|
|
cbar.set_label('Return (%)')
|
|
|
|
# 4. Strategy Statistics Table
|
|
ax4.axis('off')
|
|
table_data = []
|
|
headers = ['Strategy', 'Return%', 'Trades', 'Win%', 'MaxDD%', 'Avg Trade']
|
|
|
|
for r in successful_results:
|
|
row = [
|
|
r['strategy_name'][:15] + '...' if len(r['strategy_name']) > 15 else r['strategy_name'],
|
|
f"{r['profit_ratio']*100:.1f}%",
|
|
str(r['n_trades']),
|
|
f"{r['win_rate']*100:.0f}%",
|
|
f"{r['max_drawdown']*100:.1f}%",
|
|
f"${r['avg_trade']:.1f}"
|
|
]
|
|
table_data.append(row)
|
|
|
|
table = ax4.table(cellText=table_data, colLabels=headers, loc='center', cellLoc='center')
|
|
table.auto_set_font_size(False)
|
|
table.set_fontsize(9)
|
|
table.scale(1.2, 1.5)
|
|
|
|
# Style the table
|
|
for i in range(len(headers)):
|
|
table[(0, i)].set_facecolor('#4CAF50')
|
|
table[(0, i)].set_text_props(weight='bold', color='white')
|
|
|
|
ax4.set_title('Strategy Statistics Summary', pad=20)
|
|
|
|
plt.tight_layout()
|
|
plt.savefig(save_path, dpi=300, bbox_inches='tight')
|
|
plt.close()
|
|
|
|
logger.info(f"Summary plot saved: {save_path}")
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error creating summary plot: {e}")
|
|
plt.close('all')
|
|
|
|
def run_strategies_parallel(self, config: Dict[str, Any], config_name: str = "strategy_run") -> List[Dict[str, Any]]:
|
|
"""
|
|
Run all strategies in parallel using multiprocessing for optimal performance.
|
|
|
|
Args:
|
|
config: Configuration dictionary
|
|
config_name: Base name for output files
|
|
|
|
Returns:
|
|
List of backtest results
|
|
"""
|
|
backtest_settings = config['backtest_settings']
|
|
strategies = config['strategies']
|
|
|
|
# Create organized results folder
|
|
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
|
run_folder_name = f"{config_name}_{timestamp}"
|
|
self.results_dir = os.path.join(self.base_results_dir, run_folder_name)
|
|
os.makedirs(self.results_dir, exist_ok=True)
|
|
|
|
logger.info(f"Created run folder: {self.results_dir}")
|
|
|
|
# Load shared data once for all strategies
|
|
logger.info("Loading shared market data for parallel execution...")
|
|
self.market_data = self.load_data_once(backtest_settings)
|
|
|
|
if self.market_data.empty:
|
|
logger.error("Failed to load market data - aborting strategy execution")
|
|
return []
|
|
|
|
logger.info(f"Starting parallel backtest run with {len(strategies)} strategies")
|
|
logger.info(f"Data file: {backtest_settings['data_file']}")
|
|
logger.info(f"Period: {backtest_settings['start_date']} to {backtest_settings['end_date']}")
|
|
logger.info(f"Using cached data: {len(self.market_data)} rows")
|
|
|
|
# Determine optimal number of workers
|
|
max_workers = min(len(strategies), self.system_utils.get_optimal_workers())
|
|
logger.info(f"Using {max_workers} worker processes for parallel execution")
|
|
|
|
# Prepare strategy jobs for parallel execution
|
|
strategy_jobs = []
|
|
for i, strategy_config in enumerate(strategies, 1):
|
|
job = {
|
|
'strategy_config': strategy_config,
|
|
'backtest_settings': backtest_settings,
|
|
'strategy_index': i,
|
|
'total_strategies': len(strategies),
|
|
'run_folder_name': run_folder_name,
|
|
'shared_data_info': self._prepare_shared_data_for_worker(self.market_data)
|
|
}
|
|
strategy_jobs.append(job)
|
|
|
|
# Execute strategies in parallel
|
|
results = []
|
|
|
|
if max_workers == 1:
|
|
# Single-threaded fallback
|
|
logger.info("Using single-threaded execution (only 1 worker)")
|
|
for job in strategy_jobs:
|
|
result = self._run_strategy_worker_function(job)
|
|
results.append(result)
|
|
self._process_worker_result(result, job)
|
|
else:
|
|
# Multi-threaded execution
|
|
logger.info(f"Using parallel execution with {max_workers} workers")
|
|
|
|
with ProcessPoolExecutor(max_workers=max_workers) as executor:
|
|
# Submit all jobs
|
|
future_to_job = {
|
|
executor.submit(run_strategy_worker_function, job): job
|
|
for job in strategy_jobs
|
|
}
|
|
|
|
# Create progress bar
|
|
if TQDM_AVAILABLE:
|
|
progress_bar = tqdm(
|
|
total=len(strategies),
|
|
desc="🚀 Parallel Strategies",
|
|
ncols=100,
|
|
bar_format="{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}]"
|
|
)
|
|
else:
|
|
progress_bar = None
|
|
|
|
# Collect results as they complete
|
|
completed_count = 0
|
|
for future in as_completed(future_to_job):
|
|
job = future_to_job[future]
|
|
|
|
try:
|
|
result = future.result(timeout=300) # 5 minute timeout per strategy
|
|
results.append(result)
|
|
|
|
# Process and save result immediately
|
|
self._process_worker_result(result, job)
|
|
|
|
completed_count += 1
|
|
|
|
# Update progress
|
|
if progress_bar:
|
|
success_status = "✅" if result['success'] else "❌"
|
|
progress_bar.set_postfix_str(f"{success_status} {result['strategy_name'][:25]}")
|
|
progress_bar.update(1)
|
|
|
|
logger.info(f"Completed strategy {completed_count}/{len(strategies)}: {result['strategy_name']}")
|
|
|
|
except Exception as e:
|
|
logger.error(f"Strategy execution failed: {e}")
|
|
error_result = {
|
|
"success": False,
|
|
"error": str(e),
|
|
"strategy_name": job['strategy_config'].get('name', 'Unknown'),
|
|
"strategy_type": job['strategy_config'].get('type', 'Unknown'),
|
|
"strategy_params": job['strategy_config'].get('params', {}),
|
|
"trader_params": job['strategy_config'].get('trader_params', {}),
|
|
"traceback": traceback.format_exc()
|
|
}
|
|
results.append(error_result)
|
|
completed_count += 1
|
|
|
|
if progress_bar:
|
|
progress_bar.set_postfix_str(f"❌ {error_result['strategy_name'][:25]}")
|
|
progress_bar.update(1)
|
|
|
|
if progress_bar:
|
|
progress_bar.close()
|
|
|
|
# Log final cache statistics
|
|
cache_stats = self.data_cache.get_cache_stats()
|
|
logger.info(f"\n📊 Final data cache statistics:")
|
|
logger.info(f" Total requests: {cache_stats['total_requests']}")
|
|
logger.info(f" Cache hits: {cache_stats['hits']}")
|
|
logger.info(f" Cache misses: {cache_stats['misses']}")
|
|
logger.info(f" Hit ratio: {cache_stats['hit_ratio']:.1%}")
|
|
logger.info(f" Memory usage: {cache_stats['total_memory_mb']:.1f}MB")
|
|
|
|
# Log parallel execution summary
|
|
successful_results = [r for r in results if r['success']]
|
|
logger.info(f"\n🚀 Parallel execution completed:")
|
|
logger.info(f" Successful strategies: {len(successful_results)}/{len(results)}")
|
|
logger.info(f" Workers used: {max_workers}")
|
|
logger.info(f" Total execution time: {(datetime.now() - self.session_start_time).total_seconds():.1f}s")
|
|
|
|
self.results = results
|
|
return results
|
|
|
|
def _prepare_shared_data_for_worker(self, data: pd.DataFrame) -> Dict[str, Any]:
|
|
"""
|
|
Prepare shared data information for worker processes.
|
|
For now, we'll serialize the data. In Phase 2, we'll use shared memory.
|
|
|
|
Args:
|
|
data: Market data DataFrame
|
|
|
|
Returns:
|
|
Dictionary with data information for workers
|
|
"""
|
|
return {
|
|
'data_serialized': data.to_json(orient='split', date_format='iso'),
|
|
'data_shape': data.shape,
|
|
'data_columns': list(data.columns),
|
|
'index_name': data.index.name
|
|
}
|
|
|
|
def _process_worker_result(self, result: Dict[str, Any], job: Dict[str, Any]) -> None:
|
|
"""
|
|
Process and save individual worker result.
|
|
|
|
Args:
|
|
result: Strategy execution result
|
|
job: Original job configuration
|
|
"""
|
|
if result['success']:
|
|
# Save individual strategy results immediately
|
|
self.save_individual_strategy_results(
|
|
result,
|
|
job['run_folder_name'],
|
|
job['strategy_index']
|
|
)
|
|
|
|
logger.info(f"✓ Strategy {job['strategy_index']} saved: {result['strategy_name']}")
|
|
else:
|
|
logger.error(f"✗ Strategy {job['strategy_index']} failed: {result['strategy_name']}")
|
|
|
|
def _run_strategy_worker_function(self, job: Dict[str, Any]) -> Dict[str, Any]:
|
|
"""
|
|
Worker function to run a single strategy (for single-threaded fallback).
|
|
|
|
Args:
|
|
job: Job configuration dictionary
|
|
|
|
Returns:
|
|
Strategy execution results
|
|
"""
|
|
return self.run_single_backtest_with_shared_data(
|
|
job['strategy_config'],
|
|
job['backtest_settings'],
|
|
self.market_data, # Use cached data
|
|
job['strategy_index'],
|
|
job['total_strategies']
|
|
)
|
|
|
|
def run_single_backtest_with_shared_data(self, strategy_config: Dict[str, Any],
|
|
backtest_settings: Dict[str, Any],
|
|
shared_data: pd.DataFrame,
|
|
strategy_index: int, total_strategies: int) -> Dict[str, Any]:
|
|
"""
|
|
Run a single backtest with pre-loaded shared data for optimization.
|
|
|
|
Args:
|
|
strategy_config: Strategy configuration
|
|
backtest_settings: Backtest settings
|
|
shared_data: Pre-loaded market data
|
|
strategy_index: Index of the strategy (1-based)
|
|
total_strategies: Total number of strategies
|
|
|
|
Returns:
|
|
Dictionary with backtest results
|
|
"""
|
|
try:
|
|
start_time = time.time()
|
|
|
|
# Create strategy
|
|
strategy = self.create_strategy(strategy_config)
|
|
strategy_name = strategy_config['name']
|
|
|
|
# Extract backtest settings
|
|
initial_usd = backtest_settings.get('initial_usd', 10000)
|
|
start_date = backtest_settings['start_date']
|
|
end_date = backtest_settings['end_date']
|
|
|
|
# Extract trader parameters
|
|
trader_params = strategy_config.get('trader_params', {})
|
|
|
|
# Create trader directly (bypassing backtester for shared data processing)
|
|
final_trader_params = {
|
|
"stop_loss_pct": trader_params.get('stop_loss_pct', 0.0),
|
|
"take_profit_pct": trader_params.get('take_profit_pct', 0.0),
|
|
"portfolio_percent_per_trade": trader_params.get('portfolio_percent_per_trade', 1.0)
|
|
}
|
|
|
|
trader = IncTrader(
|
|
strategy=strategy,
|
|
initial_usd=initial_usd,
|
|
params=final_trader_params
|
|
)
|
|
|
|
logger.info(f"Running optimized backtest for strategy: {strategy_name}")
|
|
|
|
# Process data frame-by-frame (SAME as real-time processing)
|
|
data_processed = 0
|
|
if TQDM_AVAILABLE:
|
|
logger.info(f"⚡ Running Strategy {strategy_index}/{total_strategies}: {strategy_name}")
|
|
|
|
for timestamp, row in shared_data.iterrows():
|
|
ohlcv_data = {
|
|
'open': row['open'],
|
|
'high': row['high'],
|
|
'low': row['low'],
|
|
'close': row['close'],
|
|
'volume': row['volume']
|
|
}
|
|
trader.process_data_point(timestamp, ohlcv_data)
|
|
data_processed += 1
|
|
|
|
# Finalize and get results
|
|
trader.finalize()
|
|
results = trader.get_results()
|
|
|
|
# Calculate additional metrics
|
|
end_time = time.time()
|
|
backtest_duration = end_time - start_time
|
|
|
|
# Format results
|
|
formatted_results = {
|
|
"success": True,
|
|
"strategy_name": strategy_name,
|
|
"strategy_type": strategy_config['type'],
|
|
"strategy_params": strategy_config.get('params', {}),
|
|
"trader_params": trader_params,
|
|
"initial_usd": results["initial_usd"],
|
|
"final_usd": results["final_usd"],
|
|
"profit_ratio": results["profit_ratio"],
|
|
"profit_usd": results["final_usd"] - results["initial_usd"],
|
|
"n_trades": results["n_trades"],
|
|
"win_rate": results["win_rate"],
|
|
"max_drawdown": results["max_drawdown"],
|
|
"avg_trade": results["avg_trade"],
|
|
"total_fees_usd": results["total_fees_usd"],
|
|
"backtest_duration_seconds": backtest_duration,
|
|
"data_points_processed": data_processed,
|
|
"warmup_complete": results.get("warmup_complete", False),
|
|
"trades": results.get("trades", []),
|
|
"backtest_period": f"{start_date} to {end_date}"
|
|
}
|
|
|
|
logger.info(f"Optimized backtest completed for {strategy_name}: "
|
|
f"Profit: {formatted_results['profit_ratio']:.1%} "
|
|
f"(${formatted_results['profit_usd']:.2f}), "
|
|
f"Trades: {formatted_results['n_trades']}, "
|
|
f"Win Rate: {formatted_results['win_rate']:.1%}")
|
|
|
|
return formatted_results
|
|
|
|
except Exception as e:
|
|
logger.error(f"Error in optimized backtest for {strategy_config.get('name', 'Unknown')}: {e}")
|
|
return {
|
|
"success": False,
|
|
"error": str(e),
|
|
"strategy_name": strategy_config.get('name', 'Unknown'),
|
|
"strategy_type": strategy_config.get('type', 'Unknown'),
|
|
"strategy_params": strategy_config.get('params', {}),
|
|
"trader_params": strategy_config.get('trader_params', {}),
|
|
"traceback": traceback.format_exc()
|
|
}
|
|
|
|
def run_single_backtest(self, strategy_config: Dict[str, Any],
|
|
backtest_settings: Dict[str, Any], strategy_index: int, total_strategies: int) -> Dict[str, Any]:
|
|
"""
|
|
Run a single backtest with given strategy and settings.
|
|
|
|
Args:
|
|
strategy_config: Strategy configuration
|
|
backtest_settings: Backtest settings
|
|
strategy_index: Index of the strategy (1-based)
|
|
total_strategies: Total number of strategies
|
|
|
|
Returns:
|
|
Dictionary with backtest results
|
|
"""
|
|
try:
|
|
start_time = time.time()
|
|
|
|
# Create strategy
|
|
strategy = self.create_strategy(strategy_config)
|
|
strategy_name = strategy_config['name']
|
|
|
|
# Extract backtest settings
|
|
data_file = backtest_settings['data_file']
|
|
start_date = backtest_settings['start_date']
|
|
end_date = backtest_settings['end_date']
|
|
initial_usd = backtest_settings.get('initial_usd', 10000)
|
|
data_dir = backtest_settings.get('data_dir', 'data')
|
|
|
|
# Extract trader parameters
|
|
trader_params = strategy_config.get('trader_params', {})
|
|
|
|
# Create backtest config
|
|
config = BacktestConfig(
|
|
data_file=data_file,
|
|
start_date=start_date,
|
|
end_date=end_date,
|
|
initial_usd=initial_usd,
|
|
data_dir=data_dir,
|
|
stop_loss_pct=trader_params.get('stop_loss_pct', 0.0)
|
|
)
|
|
|
|
# Create backtester
|
|
backtester = IncBacktester(config)
|
|
|
|
logger.info(f"Running backtest for strategy: {strategy_name}")
|
|
|
|
# Create a custom backtester wrapper with progress tracking
|
|
if TQDM_AVAILABLE:
|
|
# Simple progress indication without threading
|
|
logger.info(f"⚡ Running Strategy {strategy_index}/{total_strategies}: {strategy_name}")
|
|
results = backtester.run_single_strategy(strategy, trader_params)
|
|
else:
|
|
# Run without progress tracking
|
|
results = backtester.run_single_strategy(strategy, trader_params)
|
|
|
|
# Calculate additional metrics
|
|
end_time = time.time()
|
|
backtest_duration = end_time - start_time
|
|
|
|
# Format results
|
|
formatted_results = {
|
|
"success": True,
|
|
"strategy_name": strategy_name,
|
|
"strategy_type": strategy_config['type'],
|
|
"strategy_params": strategy_config.get('params', {}),
|
|
"trader_params": trader_params,
|
|
"initial_usd": results["initial_usd"],
|
|
"final_usd": results["final_usd"],
|
|
"profit_ratio": results["profit_ratio"],
|
|
"profit_usd": results["final_usd"] - results["initial_usd"],
|
|
"n_trades": results["n_trades"],
|
|
"win_rate": results["win_rate"],
|
|
"max_drawdown": results["max_drawdown"],
|
|
"avg_trade": results["avg_trade"],
|
|
"total_fees_usd": results["total_fees_usd"],
|
|
"backtest_duration_seconds": backtest_duration,
|
|
"data_points_processed": results.get("data_points", 0),
|
|
"warmup_complete": results.get("warmup_complete", False),
|
|
"trades": results.get("trades", []),
|
|
"backtest_period": f"{start_date} to {end_date}"
|
|
}
|
|
|
|
logger.info(f"Backtest completed for {strategy_name}: "
|
|
f"Profit: {formatted_results['profit_ratio']:.1%} "
|
|
f"(${formatted_results['profit_usd']:.2f}), "
|
|
f"Trades: {formatted_results['n_trades']}, "
|
|
f"Win Rate: {formatted_results['win_rate']:.1%}")
|
|
|
|
return formatted_results
|
|
|
|
except Exception as e:
|
|
# Close progress bar on error
|
|
if TQDM_AVAILABLE and 'strategy_progress' in locals():
|
|
strategy_progress.close()
|
|
|
|
logger.error(f"Error in backtest for {strategy_config.get('name', 'Unknown')}: {e}")
|
|
return {
|
|
"success": False,
|
|
"error": str(e),
|
|
"strategy_name": strategy_config.get('name', 'Unknown'),
|
|
"strategy_type": strategy_config.get('type', 'Unknown'),
|
|
"strategy_params": strategy_config.get('params', {}),
|
|
"trader_params": strategy_config.get('trader_params', {}),
|
|
"traceback": traceback.format_exc()
|
|
}
|
|
|
|
def save_results(self, results: List[Dict[str, Any]], config_name: str = "strategy_run") -> None:
|
|
"""
|
|
Save backtest results to files.
|
|
|
|
Args:
|
|
results: List of backtest results
|
|
config_name: Base name for output files
|
|
"""
|
|
base_filename = "summary"
|
|
|
|
# Use ResultsSaver for comprehensive results
|
|
saver = ResultsSaver(self.results_dir)
|
|
saver.save_comprehensive_results(
|
|
results=results,
|
|
base_filename=base_filename,
|
|
session_start_time=self.session_start_time
|
|
)
|
|
|
|
# Create summary CSV
|
|
successful_results = [r for r in results if r['success']]
|
|
|
|
if successful_results:
|
|
summary_df = pd.DataFrame([
|
|
{
|
|
'Strategy Name': r['strategy_name'],
|
|
'Strategy Type': r['strategy_type'],
|
|
'Initial USD': r['initial_usd'],
|
|
'Final USD': r['final_usd'],
|
|
'Profit USD': r['profit_usd'],
|
|
'Profit Ratio': r['profit_ratio'],
|
|
'Number of Trades': r['n_trades'],
|
|
'Win Rate': r['win_rate'],
|
|
'Max Drawdown': r['max_drawdown'],
|
|
'Avg Trade': r['avg_trade'],
|
|
'Total Fees': r['total_fees_usd'],
|
|
'Duration (s)': r['backtest_duration_seconds']
|
|
}
|
|
for r in successful_results
|
|
])
|
|
|
|
summary_path = os.path.join(self.results_dir, f"{base_filename}.csv")
|
|
summary_df.to_csv(summary_path, index=False)
|
|
logger.info(f"Summary saved to: {summary_path}")
|
|
|
|
# Create summary comparison plot
|
|
if PLOTTING_AVAILABLE and len(successful_results) > 0:
|
|
summary_plot_path = os.path.join(self.results_dir, f"{base_filename}_plot.png")
|
|
self.create_summary_plot(results, summary_plot_path)
|
|
|
|
logger.info(f"All results saved to: {self.results_dir}/")
|
|
|
|
# Print file summary
|
|
logger.info(f"\n📊 Files generated in: {os.path.basename(self.results_dir)}/")
|
|
logger.info(f" 📋 Summary data and plots for final comparison")
|
|
logger.info(f" 📈 Individual strategy files saved during execution")
|
|
logger.info(f" 🎨 Strategy plots: {len(successful_results)} individual + {len(successful_results)} detailed + 1 summary")
|
|
logger.info(f" 📊 Trade files: {len(successful_results)} trade CSVs + {len(successful_results)} signal CSVs")
|
|
|
|
def print_summary(self, results: List[Dict[str, Any]]) -> None:
|
|
"""
|
|
Print a summary of backtest results.
|
|
|
|
Args:
|
|
results: List of backtest results
|
|
"""
|
|
successful_results = [r for r in results if r['success']]
|
|
failed_results = [r for r in results if not r['success']]
|
|
|
|
print(f"\n{'='*60}")
|
|
print(f"BACKTEST SUMMARY")
|
|
print(f"{'='*60}")
|
|
print(f"Total Strategies: {len(results)}")
|
|
print(f"Successful: {len(successful_results)}")
|
|
print(f"Failed: {len(failed_results)}")
|
|
print(f"Session Duration: {(datetime.now() - self.session_start_time).total_seconds():.1f} seconds")
|
|
|
|
if successful_results:
|
|
print(f"\nSTRATEGY RESULTS:")
|
|
print(f"{'-'*60}")
|
|
|
|
# Sort by profit ratio
|
|
sorted_results = sorted(successful_results, key=lambda x: x['profit_ratio'], reverse=True)
|
|
|
|
for i, result in enumerate(sorted_results, 1):
|
|
print(f"{i}. {result['strategy_name']} ({result['strategy_type']})")
|
|
print(f" Profit: {result['profit_ratio']:.1%} (${result['profit_usd']:.2f})")
|
|
print(f" Trades: {result['n_trades']} | Win Rate: {result['win_rate']:.1%}")
|
|
print(f" Max Drawdown: {result['max_drawdown']:.1%} | Avg Trade: ${result['avg_trade']:.2f}")
|
|
print()
|
|
|
|
if failed_results:
|
|
print(f"\nFAILED STRATEGIES:")
|
|
print(f"{'-'*60}")
|
|
for result in failed_results:
|
|
print(f"- {result['strategy_name']}: {result['error']}")
|
|
|
|
print(f"{'='*60}")
|
|
|
|
def run_strategies(self, config: Dict[str, Any], config_name: str = "strategy_run") -> List[Dict[str, Any]]:
|
|
"""
|
|
Run all strategies using the optimal execution method (parallel or sequential).
|
|
|
|
Args:
|
|
config: Configuration dictionary
|
|
config_name: Base name for output files
|
|
|
|
Returns:
|
|
List of backtest results
|
|
"""
|
|
if self.enable_parallel and len(config['strategies']) > 1:
|
|
# Use parallel execution for multiple strategies
|
|
logger.info("Using parallel execution for multiple strategies")
|
|
return self.run_strategies_parallel(config, config_name)
|
|
else:
|
|
# Use sequential execution for single strategy or when parallel is disabled
|
|
logger.info("Using sequential execution")
|
|
return self.run_strategies_sequential(config, config_name)
|
|
|
|
def run_strategies_sequential(self, config: Dict[str, Any], config_name: str = "strategy_run") -> List[Dict[str, Any]]:
|
|
"""
|
|
Run all strategies sequentially (original method, kept for compatibility).
|
|
|
|
Args:
|
|
config: Configuration dictionary
|
|
config_name: Base name for output files
|
|
|
|
Returns:
|
|
List of backtest results
|
|
"""
|
|
backtest_settings = config['backtest_settings']
|
|
strategies = config['strategies']
|
|
|
|
# Create organized results folder: [config_name]_[timestamp]
|
|
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
|
|
run_folder_name = f"{config_name}_{timestamp}"
|
|
self.results_dir = os.path.join(self.base_results_dir, run_folder_name)
|
|
os.makedirs(self.results_dir, exist_ok=True)
|
|
|
|
logger.info(f"Created run folder: {self.results_dir}")
|
|
|
|
# Load market data for plotting and strategy execution (load once, use many times)
|
|
logger.info("Loading shared market data...")
|
|
self.market_data = self.load_data_once(backtest_settings)
|
|
|
|
if self.market_data.empty:
|
|
logger.error("Failed to load market data - aborting strategy execution")
|
|
return []
|
|
|
|
logger.info(f"Starting sequential backtest run with {len(strategies)} strategies")
|
|
logger.info(f"Data file: {backtest_settings['data_file']}")
|
|
logger.info(f"Period: {backtest_settings['start_date']} to {backtest_settings['end_date']}")
|
|
logger.info(f"Using cached data: {len(self.market_data)} rows")
|
|
|
|
results = []
|
|
|
|
# Create progress bar for strategies
|
|
if TQDM_AVAILABLE:
|
|
strategy_iterator = tqdm(enumerate(strategies, 1), total=len(strategies),
|
|
desc="🚀 Strategies", ncols=100,
|
|
bar_format="{l_bar}{bar}| {n_fmt}/{total_fmt} [{elapsed}<{remaining}]")
|
|
else:
|
|
strategy_iterator = enumerate(strategies, 1)
|
|
|
|
for i, strategy_config in strategy_iterator:
|
|
if TQDM_AVAILABLE:
|
|
strategy_iterator.set_postfix_str(f"{strategy_config['name'][:30]}")
|
|
|
|
logger.info(f"\n--- Running Strategy {i}/{len(strategies)}: {strategy_config['name']} ---")
|
|
|
|
# Use shared data method for optimized execution
|
|
result = self.run_single_backtest_with_shared_data(
|
|
strategy_config,
|
|
backtest_settings,
|
|
self.market_data, # Use cached data
|
|
i,
|
|
len(strategies)
|
|
)
|
|
results.append(result)
|
|
|
|
# Save individual strategy results immediately
|
|
self.save_individual_strategy_results(result, run_folder_name, i)
|
|
|
|
# Show progress
|
|
if result['success']:
|
|
logger.info(f"✓ Strategy {i} completed successfully")
|
|
if TQDM_AVAILABLE:
|
|
strategy_iterator.set_postfix_str(f"✓ {strategy_config['name'][:30]}")
|
|
else:
|
|
logger.error(f"✗ Strategy {i} failed: {result['error']}")
|
|
if TQDM_AVAILABLE:
|
|
strategy_iterator.set_postfix_str(f"✗ {strategy_config['name'][:30]}")
|
|
|
|
# Log final cache statistics
|
|
cache_stats = self.data_cache.get_cache_stats()
|
|
logger.info(f"\n📊 Final data cache statistics:")
|
|
logger.info(f" Total requests: {cache_stats['total_requests']}")
|
|
logger.info(f" Cache hits: {cache_stats['hits']}")
|
|
logger.info(f" Cache misses: {cache_stats['misses']}")
|
|
logger.info(f" Hit ratio: {cache_stats['hit_ratio']:.1%}")
|
|
logger.info(f" Memory usage: {cache_stats['total_memory_mb']:.1f}MB")
|
|
|
|
self.results = results
|
|
return results
|
|
|
|
|
|
def create_example_config(output_path: str) -> None:
|
|
"""
|
|
Create an example configuration file.
|
|
|
|
Args:
|
|
output_path: Path where to save the example config
|
|
"""
|
|
example_config = {
|
|
"backtest_settings": {
|
|
"data_file": "btcusd_1-min_data.csv",
|
|
"data_dir": "data",
|
|
"start_date": "2023-01-01",
|
|
"end_date": "2023-01-31",
|
|
"initial_usd": 10000
|
|
},
|
|
"strategies": [
|
|
{
|
|
"name": "MetaTrend_Conservative",
|
|
"type": "metatrend",
|
|
"params": {
|
|
"supertrend_periods": [12, 10, 11],
|
|
"supertrend_multipliers": [3.0, 1.0, 2.0],
|
|
"min_trend_agreement": 0.8,
|
|
"timeframe": "15min"
|
|
},
|
|
"trader_params": {
|
|
"stop_loss_pct": 0.02,
|
|
"portfolio_percent_per_trade": 0.5
|
|
}
|
|
},
|
|
{
|
|
"name": "MetaTrend_Aggressive",
|
|
"type": "metatrend",
|
|
"params": {
|
|
"supertrend_periods": [10, 8, 9],
|
|
"supertrend_multipliers": [2.0, 1.0, 1.5],
|
|
"min_trend_agreement": 0.5,
|
|
"timeframe": "5min"
|
|
},
|
|
"trader_params": {
|
|
"stop_loss_pct": 0.03,
|
|
"portfolio_percent_per_trade": 0.8
|
|
}
|
|
},
|
|
{
|
|
"name": "BBRS_Default",
|
|
"type": "bbrs",
|
|
"params": {
|
|
"bb_length": 20,
|
|
"bb_std": 2.0,
|
|
"rsi_length": 14,
|
|
"rsi_overbought": 70,
|
|
"rsi_oversold": 30,
|
|
"timeframe": "15min"
|
|
},
|
|
"trader_params": {
|
|
"stop_loss_pct": 0.025,
|
|
"portfolio_percent_per_trade": 0.6
|
|
}
|
|
},
|
|
{
|
|
"name": "Random_Baseline",
|
|
"type": "random",
|
|
"params": {
|
|
"signal_probability": 0.001,
|
|
"timeframe": "15min"
|
|
},
|
|
"trader_params": {
|
|
"stop_loss_pct": 0.02,
|
|
"portfolio_percent_per_trade": 0.5
|
|
}
|
|
}
|
|
]
|
|
}
|
|
|
|
os.makedirs(os.path.dirname(output_path), exist_ok=True)
|
|
|
|
with open(output_path, 'w') as f:
|
|
json.dump(example_config, f, indent=2)
|
|
|
|
print(f"Example configuration saved to: {output_path}")
|
|
|
|
|
|
def main():
|
|
"""Main function for running strategy backtests."""
|
|
parser = argparse.ArgumentParser(description="Strategy Backtest Runner")
|
|
|
|
parser.add_argument("--config", type=str, default=None,
|
|
help="Path to JSON configuration file")
|
|
parser.add_argument("--results-dir", type=str, default="results",
|
|
help="Directory for saving results")
|
|
parser.add_argument("--create-example", type=str, default=None,
|
|
help="Create example config file at specified path")
|
|
parser.add_argument("--verbose", action="store_true",
|
|
help="Enable verbose logging")
|
|
parser.add_argument("--no-parallel", action="store_true",
|
|
help="Disable parallel execution (use sequential mode)")
|
|
|
|
args = parser.parse_args()
|
|
|
|
# Set logging level
|
|
if args.verbose:
|
|
logging.getLogger().setLevel(logging.DEBUG)
|
|
logging.getLogger('IncrementalTrader.strategies').setLevel(logging.INFO)
|
|
logging.getLogger('IncrementalTrader.trader').setLevel(logging.INFO)
|
|
|
|
# Create example config if requested
|
|
if args.create_example:
|
|
create_example_config(args.create_example)
|
|
return
|
|
|
|
# Require config for normal operation
|
|
if not args.config:
|
|
parser.error("--config is required unless using --create-example")
|
|
|
|
try:
|
|
# Create runner with parallel execution setting
|
|
enable_parallel = not args.no_parallel
|
|
runner = StrategyRunner(results_dir=args.results_dir, enable_parallel=enable_parallel)
|
|
|
|
# Load configuration
|
|
config = runner.load_config(args.config)
|
|
|
|
# Check if data file exists
|
|
data_path = os.path.join(
|
|
config['backtest_settings'].get('data_dir', 'data'),
|
|
config['backtest_settings']['data_file']
|
|
)
|
|
if not os.path.exists(data_path):
|
|
logger.error(f"Data file not found: {data_path}")
|
|
return
|
|
|
|
# Run strategies
|
|
config_name = os.path.splitext(os.path.basename(args.config))[0]
|
|
results = runner.run_strategies(config, config_name)
|
|
|
|
# Save results
|
|
runner.save_results(results, config_name)
|
|
|
|
# Print summary
|
|
runner.print_summary(results)
|
|
|
|
except FileNotFoundError as e:
|
|
logger.error(f"File not found: {e}")
|
|
except json.JSONDecodeError as e:
|
|
logger.error(f"JSON error: {e}")
|
|
except ValueError as e:
|
|
logger.error(f"Configuration error: {e}")
|
|
except KeyboardInterrupt:
|
|
logger.info("Backtest interrupted by user")
|
|
except Exception as e:
|
|
logger.error(f"Backtest failed: {e}")
|
|
traceback.print_exc()
|
|
|
|
|
|
if __name__ == "__main__":
|
|
main() |