Vasily.onl c9ae507bb7 Implement Incremental Trading Framework
- Introduced a comprehensive framework for incremental trading strategies, including modules for strategy execution, backtesting, and data processing.
- Added key components such as `IncTrader`, `IncBacktester`, and various trading strategies (e.g., `MetaTrendStrategy`, `BBRSStrategy`, `RandomStrategy`) to facilitate real-time trading and backtesting.
- Implemented a robust backtesting framework with configuration management, parallel execution, and result analysis capabilities.
- Developed an incremental indicators framework to support real-time data processing with constant memory usage.
- Enhanced documentation to provide clear usage examples and architecture overview, ensuring maintainability and ease of understanding for future development.
- Ensured compatibility with existing strategies and maintained a focus on performance and scalability throughout the implementation.
2025-05-28 16:29:48 +08:00

35 lines
1.0 KiB
Python

"""
Incremental Trading Execution
This module provides trading execution and position management for incremental strategies.
It handles real-time trade execution, risk management, and performance tracking.
Components:
- IncTrader: Main trader class for strategy execution
- PositionManager: Position state and trade execution management
- TradeRecord: Data structure for completed trades
- MarketFees: Fee calculation utilities
Example:
from IncrementalTrader.trader import IncTrader, PositionManager
from IncrementalTrader.strategies import MetaTrendStrategy
strategy = MetaTrendStrategy("metatrend")
trader = IncTrader(strategy, initial_usd=10000)
# Process data stream
for timestamp, ohlcv in data_stream:
trader.process_data_point(timestamp, ohlcv)
results = trader.get_results()
"""
from .trader import IncTrader
from .position import PositionManager, TradeRecord, MarketFees
__all__ = [
"IncTrader",
"PositionManager",
"TradeRecord",
"MarketFees",
]