- Introduced a comprehensive framework for incremental trading strategies, including modules for strategy execution, backtesting, and data processing. - Added key components such as `IncTrader`, `IncBacktester`, and various trading strategies (e.g., `MetaTrendStrategy`, `BBRSStrategy`, `RandomStrategy`) to facilitate real-time trading and backtesting. - Implemented a robust backtesting framework with configuration management, parallel execution, and result analysis capabilities. - Developed an incremental indicators framework to support real-time data processing with constant memory usage. - Enhanced documentation to provide clear usage examples and architecture overview, ensuring maintainability and ease of understanding for future development. - Ensured compatibility with existing strategies and maintained a focus on performance and scalability throughout the implementation.
289 lines
9.4 KiB
Python
289 lines
9.4 KiB
Python
"""
|
|
RSI (Relative Strength Index) Indicator State
|
|
|
|
This module implements incremental RSI calculation that maintains constant memory usage
|
|
and provides identical results to traditional batch calculations.
|
|
"""
|
|
|
|
from typing import Union, Optional
|
|
from .base import SimpleIndicatorState
|
|
from .moving_average import ExponentialMovingAverageState
|
|
|
|
|
|
class RSIState(SimpleIndicatorState):
|
|
"""
|
|
Incremental RSI calculation state using Wilder's smoothing.
|
|
|
|
RSI measures the speed and magnitude of price changes to evaluate overbought
|
|
or oversold conditions. It oscillates between 0 and 100.
|
|
|
|
RSI = 100 - (100 / (1 + RS))
|
|
where RS = Average Gain / Average Loss over the specified period
|
|
|
|
This implementation uses Wilder's smoothing (alpha = 1/period) to match
|
|
the original pandas implementation exactly.
|
|
|
|
Attributes:
|
|
period (int): The RSI period (typically 14)
|
|
alpha (float): Wilder's smoothing factor (1/period)
|
|
avg_gain (float): Current average gain
|
|
avg_loss (float): Current average loss
|
|
previous_close (float): Previous period's close price
|
|
|
|
Example:
|
|
rsi = RSIState(period=14)
|
|
|
|
# Add price data incrementally
|
|
rsi_value = rsi.update(100.0) # Returns current RSI value
|
|
rsi_value = rsi.update(105.0) # Updates and returns new RSI value
|
|
|
|
# Check if warmed up
|
|
if rsi.is_warmed_up():
|
|
current_rsi = rsi.get_current_value()
|
|
"""
|
|
|
|
def __init__(self, period: int = 14):
|
|
"""
|
|
Initialize RSI state.
|
|
|
|
Args:
|
|
period: Number of periods for RSI calculation (default: 14)
|
|
|
|
Raises:
|
|
ValueError: If period is not a positive integer
|
|
"""
|
|
super().__init__(period)
|
|
self.alpha = 1.0 / period # Wilder's smoothing factor
|
|
self.avg_gain = None
|
|
self.avg_loss = None
|
|
self.previous_close = None
|
|
self.is_initialized = True
|
|
|
|
def update(self, new_close: Union[float, int]) -> float:
|
|
"""
|
|
Update RSI with new close price using Wilder's smoothing.
|
|
|
|
Args:
|
|
new_close: New closing price
|
|
|
|
Returns:
|
|
Current RSI value (0-100), or NaN if not warmed up
|
|
|
|
Raises:
|
|
ValueError: If new_close is not finite
|
|
TypeError: If new_close is not numeric
|
|
"""
|
|
# Validate input - accept numpy types as well
|
|
import numpy as np
|
|
if not isinstance(new_close, (int, float, np.integer, np.floating)):
|
|
raise TypeError(f"new_close must be numeric, got {type(new_close)}")
|
|
|
|
self.validate_input(float(new_close))
|
|
|
|
new_close = float(new_close)
|
|
|
|
if self.previous_close is None:
|
|
# First value - no gain/loss to calculate
|
|
self.previous_close = new_close
|
|
self.values_received += 1
|
|
# Return NaN until warmed up (matches original behavior)
|
|
self._current_value = float('nan')
|
|
return self._current_value
|
|
|
|
# Calculate price change
|
|
price_change = new_close - self.previous_close
|
|
|
|
# Separate gains and losses
|
|
gain = max(price_change, 0.0)
|
|
loss = max(-price_change, 0.0)
|
|
|
|
if self.avg_gain is None:
|
|
# Initialize with first gain/loss
|
|
self.avg_gain = gain
|
|
self.avg_loss = loss
|
|
else:
|
|
# Wilder's smoothing: avg = alpha * new_value + (1 - alpha) * previous_avg
|
|
self.avg_gain = self.alpha * gain + (1 - self.alpha) * self.avg_gain
|
|
self.avg_loss = self.alpha * loss + (1 - self.alpha) * self.avg_loss
|
|
|
|
# Calculate RSI only if warmed up
|
|
# RSI should start when we have 'period' price changes (not including the first value)
|
|
if self.values_received > self.period:
|
|
if self.avg_loss == 0.0:
|
|
# Avoid division by zero - all gains, no losses
|
|
if self.avg_gain > 0:
|
|
rsi_value = 100.0
|
|
else:
|
|
rsi_value = 50.0 # Neutral when both are zero
|
|
else:
|
|
rs = self.avg_gain / self.avg_loss
|
|
rsi_value = 100.0 - (100.0 / (1.0 + rs))
|
|
else:
|
|
# Not warmed up yet - return NaN
|
|
rsi_value = float('nan')
|
|
|
|
# Store state
|
|
self.previous_close = new_close
|
|
self.values_received += 1
|
|
self._current_value = rsi_value
|
|
|
|
return rsi_value
|
|
|
|
def is_warmed_up(self) -> bool:
|
|
"""
|
|
Check if RSI has enough data for reliable values.
|
|
|
|
Returns:
|
|
True if we have enough price changes for RSI calculation
|
|
"""
|
|
return self.values_received > self.period
|
|
|
|
def reset(self) -> None:
|
|
"""Reset RSI state to initial conditions."""
|
|
self.alpha = 1.0 / self.period
|
|
self.avg_gain = None
|
|
self.avg_loss = None
|
|
self.previous_close = None
|
|
self.values_received = 0
|
|
self._current_value = None
|
|
|
|
def get_current_value(self) -> Optional[float]:
|
|
"""
|
|
Get current RSI value without updating.
|
|
|
|
Returns:
|
|
Current RSI value (0-100), or None if not enough data
|
|
"""
|
|
if not self.is_warmed_up():
|
|
return None
|
|
return self._current_value
|
|
|
|
def get_state_summary(self) -> dict:
|
|
"""Get detailed state summary for debugging."""
|
|
base_summary = super().get_state_summary()
|
|
base_summary.update({
|
|
'alpha': self.alpha,
|
|
'previous_close': self.previous_close,
|
|
'avg_gain': self.avg_gain,
|
|
'avg_loss': self.avg_loss,
|
|
'current_rsi': self.get_current_value()
|
|
})
|
|
return base_summary
|
|
|
|
|
|
class SimpleRSIState(SimpleIndicatorState):
|
|
"""
|
|
Simple RSI implementation using simple moving averages instead of EMAs.
|
|
|
|
This version uses simple moving averages for gain and loss smoothing,
|
|
which matches traditional RSI implementations but requires more memory.
|
|
"""
|
|
|
|
def __init__(self, period: int = 14):
|
|
"""
|
|
Initialize simple RSI state.
|
|
|
|
Args:
|
|
period: Number of periods for RSI calculation (default: 14)
|
|
"""
|
|
super().__init__(period)
|
|
from collections import deque
|
|
self.gains = deque(maxlen=period)
|
|
self.losses = deque(maxlen=period)
|
|
self.gain_sum = 0.0
|
|
self.loss_sum = 0.0
|
|
self.previous_close = None
|
|
self.is_initialized = True
|
|
|
|
def update(self, new_close: Union[float, int]) -> float:
|
|
"""
|
|
Update simple RSI with new close price.
|
|
|
|
Args:
|
|
new_close: New closing price
|
|
|
|
Returns:
|
|
Current RSI value (0-100)
|
|
"""
|
|
# Validate input
|
|
if not isinstance(new_close, (int, float)):
|
|
raise TypeError(f"new_close must be numeric, got {type(new_close)}")
|
|
|
|
self.validate_input(new_close)
|
|
|
|
new_close = float(new_close)
|
|
|
|
if self.previous_close is None:
|
|
# First value
|
|
self.previous_close = new_close
|
|
self.values_received += 1
|
|
self._current_value = 50.0
|
|
return self._current_value
|
|
|
|
# Calculate price change
|
|
price_change = new_close - self.previous_close
|
|
gain = max(price_change, 0.0)
|
|
loss = max(-price_change, 0.0)
|
|
|
|
# Update rolling sums
|
|
if len(self.gains) == self.period:
|
|
self.gain_sum -= self.gains[0]
|
|
self.loss_sum -= self.losses[0]
|
|
|
|
self.gains.append(gain)
|
|
self.losses.append(loss)
|
|
self.gain_sum += gain
|
|
self.loss_sum += loss
|
|
|
|
# Calculate RSI
|
|
if len(self.gains) == 0:
|
|
rsi_value = 50.0
|
|
else:
|
|
avg_gain = self.gain_sum / len(self.gains)
|
|
avg_loss = self.loss_sum / len(self.losses)
|
|
|
|
if avg_loss == 0.0:
|
|
rsi_value = 100.0
|
|
else:
|
|
rs = avg_gain / avg_loss
|
|
rsi_value = 100.0 - (100.0 / (1.0 + rs))
|
|
|
|
# Store state
|
|
self.previous_close = new_close
|
|
self.values_received += 1
|
|
self._current_value = rsi_value
|
|
|
|
return rsi_value
|
|
|
|
def is_warmed_up(self) -> bool:
|
|
"""Check if simple RSI is warmed up."""
|
|
return len(self.gains) >= self.period
|
|
|
|
def reset(self) -> None:
|
|
"""Reset simple RSI state."""
|
|
self.gains.clear()
|
|
self.losses.clear()
|
|
self.gain_sum = 0.0
|
|
self.loss_sum = 0.0
|
|
self.previous_close = None
|
|
self.values_received = 0
|
|
self._current_value = None
|
|
|
|
def get_current_value(self) -> Optional[float]:
|
|
"""Get current simple RSI value."""
|
|
if self.values_received == 0:
|
|
return None
|
|
return self._current_value
|
|
|
|
def get_state_summary(self) -> dict:
|
|
"""Get detailed state summary for debugging."""
|
|
base_summary = super().get_state_summary()
|
|
base_summary.update({
|
|
'previous_close': self.previous_close,
|
|
'gains_window_size': len(self.gains),
|
|
'losses_window_size': len(self.losses),
|
|
'gain_sum': self.gain_sum,
|
|
'loss_sum': self.loss_sum,
|
|
'current_rsi': self.get_current_value()
|
|
})
|
|
return base_summary |