- Introduced a comprehensive framework for incremental trading strategies, including modules for strategy execution, backtesting, and data processing. - Added key components such as `IncTrader`, `IncBacktester`, and various trading strategies (e.g., `MetaTrendStrategy`, `BBRSStrategy`, `RandomStrategy`) to facilitate real-time trading and backtesting. - Implemented a robust backtesting framework with configuration management, parallel execution, and result analysis capabilities. - Developed an incremental indicators framework to support real-time data processing with constant memory usage. - Enhanced documentation to provide clear usage examples and architecture overview, ensuring maintainability and ease of understanding for future development. - Ensured compatibility with existing strategies and maintained a focus on performance and scalability throughout the implementation.
254 lines
8.1 KiB
Python
254 lines
8.1 KiB
Python
"""
|
|
Average True Range (ATR) Indicator State
|
|
|
|
This module implements incremental ATR calculation that maintains constant memory usage
|
|
and provides identical results to traditional batch calculations. ATR is used by
|
|
Supertrend and other volatility-based indicators.
|
|
"""
|
|
|
|
from typing import Dict, Union, Optional
|
|
from .base import OHLCIndicatorState
|
|
from .moving_average import ExponentialMovingAverageState
|
|
|
|
|
|
class ATRState(OHLCIndicatorState):
|
|
"""
|
|
Incremental Average True Range calculation state.
|
|
|
|
ATR measures market volatility by calculating the average of true ranges over
|
|
a specified period. True Range is the maximum of:
|
|
1. Current High - Current Low
|
|
2. |Current High - Previous Close|
|
|
3. |Current Low - Previous Close|
|
|
|
|
This implementation uses exponential moving average for smoothing, which is
|
|
more responsive than simple moving average and requires less memory.
|
|
|
|
Attributes:
|
|
period (int): The ATR period
|
|
ema_state (ExponentialMovingAverageState): EMA state for smoothing true ranges
|
|
previous_close (float): Previous period's close price
|
|
|
|
Example:
|
|
atr = ATRState(period=14)
|
|
|
|
# Add OHLC data incrementally
|
|
ohlc = {'open': 100, 'high': 105, 'low': 98, 'close': 103}
|
|
atr_value = atr.update(ohlc) # Returns current ATR value
|
|
|
|
# Check if warmed up
|
|
if atr.is_warmed_up():
|
|
current_atr = atr.get_current_value()
|
|
"""
|
|
|
|
def __init__(self, period: int = 14):
|
|
"""
|
|
Initialize ATR state.
|
|
|
|
Args:
|
|
period: Number of periods for ATR calculation (default: 14)
|
|
|
|
Raises:
|
|
ValueError: If period is not a positive integer
|
|
"""
|
|
super().__init__(period)
|
|
self.ema_state = ExponentialMovingAverageState(period)
|
|
self.previous_close = None
|
|
self.is_initialized = True
|
|
|
|
def update(self, ohlc_data: Dict[str, float]) -> float:
|
|
"""
|
|
Update ATR with new OHLC data.
|
|
|
|
Args:
|
|
ohlc_data: Dictionary with 'open', 'high', 'low', 'close' keys
|
|
|
|
Returns:
|
|
Current ATR value
|
|
|
|
Raises:
|
|
ValueError: If OHLC data is invalid
|
|
TypeError: If ohlc_data is not a dictionary
|
|
"""
|
|
# Validate input
|
|
if not isinstance(ohlc_data, dict):
|
|
raise TypeError(f"ohlc_data must be a dictionary, got {type(ohlc_data)}")
|
|
|
|
self.validate_input(ohlc_data)
|
|
|
|
high = float(ohlc_data['high'])
|
|
low = float(ohlc_data['low'])
|
|
close = float(ohlc_data['close'])
|
|
|
|
# Calculate True Range
|
|
if self.previous_close is None:
|
|
# First period - True Range is just High - Low
|
|
true_range = high - low
|
|
else:
|
|
# True Range is the maximum of:
|
|
# 1. Current High - Current Low
|
|
# 2. |Current High - Previous Close|
|
|
# 3. |Current Low - Previous Close|
|
|
tr1 = high - low
|
|
tr2 = abs(high - self.previous_close)
|
|
tr3 = abs(low - self.previous_close)
|
|
true_range = max(tr1, tr2, tr3)
|
|
|
|
# Update EMA with the true range
|
|
atr_value = self.ema_state.update(true_range)
|
|
|
|
# Store current close as previous close for next calculation
|
|
self.previous_close = close
|
|
self.values_received += 1
|
|
|
|
# Store current ATR value
|
|
self._current_values = {'atr': atr_value}
|
|
|
|
return atr_value
|
|
|
|
def is_warmed_up(self) -> bool:
|
|
"""
|
|
Check if ATR has enough data for reliable values.
|
|
|
|
Returns:
|
|
True if EMA state is warmed up (has enough true range values)
|
|
"""
|
|
return self.ema_state.is_warmed_up()
|
|
|
|
def reset(self) -> None:
|
|
"""Reset ATR state to initial conditions."""
|
|
self.ema_state.reset()
|
|
self.previous_close = None
|
|
self.values_received = 0
|
|
self._current_values = {}
|
|
|
|
def get_current_value(self) -> Optional[float]:
|
|
"""
|
|
Get current ATR value without updating.
|
|
|
|
Returns:
|
|
Current ATR value, or None if not warmed up
|
|
"""
|
|
if not self.is_warmed_up():
|
|
return None
|
|
return self.ema_state.get_current_value()
|
|
|
|
def get_state_summary(self) -> dict:
|
|
"""Get detailed state summary for debugging."""
|
|
base_summary = super().get_state_summary()
|
|
base_summary.update({
|
|
'previous_close': self.previous_close,
|
|
'ema_state': self.ema_state.get_state_summary(),
|
|
'current_atr': self.get_current_value()
|
|
})
|
|
return base_summary
|
|
|
|
|
|
class SimpleATRState(OHLCIndicatorState):
|
|
"""
|
|
Simple ATR implementation using simple moving average instead of EMA.
|
|
|
|
This version uses a simple moving average for smoothing true ranges,
|
|
which matches some traditional ATR implementations but requires more memory.
|
|
"""
|
|
|
|
def __init__(self, period: int = 14):
|
|
"""
|
|
Initialize simple ATR state.
|
|
|
|
Args:
|
|
period: Number of periods for ATR calculation (default: 14)
|
|
"""
|
|
super().__init__(period)
|
|
from collections import deque
|
|
self.true_ranges = deque(maxlen=period)
|
|
self.tr_sum = 0.0
|
|
self.previous_close = None
|
|
self.is_initialized = True
|
|
|
|
def update(self, ohlc_data: Dict[str, float]) -> float:
|
|
"""
|
|
Update simple ATR with new OHLC data.
|
|
|
|
Args:
|
|
ohlc_data: Dictionary with 'open', 'high', 'low', 'close' keys
|
|
|
|
Returns:
|
|
Current ATR value
|
|
"""
|
|
# Validate input
|
|
if not isinstance(ohlc_data, dict):
|
|
raise TypeError(f"ohlc_data must be a dictionary, got {type(ohlc_data)}")
|
|
|
|
self.validate_input(ohlc_data)
|
|
|
|
high = float(ohlc_data['high'])
|
|
low = float(ohlc_data['low'])
|
|
close = float(ohlc_data['close'])
|
|
|
|
# Calculate True Range
|
|
if self.previous_close is None:
|
|
true_range = high - low
|
|
else:
|
|
tr1 = high - low
|
|
tr2 = abs(high - self.previous_close)
|
|
tr3 = abs(low - self.previous_close)
|
|
true_range = max(tr1, tr2, tr3)
|
|
|
|
# Update rolling sum
|
|
if len(self.true_ranges) == self.period:
|
|
self.tr_sum -= self.true_ranges[0] # Remove oldest value
|
|
|
|
self.true_ranges.append(true_range)
|
|
self.tr_sum += true_range
|
|
|
|
# Calculate ATR
|
|
atr_value = self.tr_sum / len(self.true_ranges)
|
|
|
|
# Store current close as previous close for next calculation
|
|
self.previous_close = close
|
|
self.values_received += 1
|
|
|
|
# Store current ATR value
|
|
self._current_values = {'atr': atr_value}
|
|
|
|
return atr_value
|
|
|
|
def is_warmed_up(self) -> bool:
|
|
"""
|
|
Check if simple ATR has enough data for reliable values.
|
|
|
|
Returns:
|
|
True if we have at least 'period' number of true range values
|
|
"""
|
|
return len(self.true_ranges) >= self.period
|
|
|
|
def reset(self) -> None:
|
|
"""Reset simple ATR state to initial conditions."""
|
|
self.true_ranges.clear()
|
|
self.tr_sum = 0.0
|
|
self.previous_close = None
|
|
self.values_received = 0
|
|
self._current_values = {}
|
|
|
|
def get_current_value(self) -> Optional[float]:
|
|
"""
|
|
Get current simple ATR value without updating.
|
|
|
|
Returns:
|
|
Current ATR value, or None if not warmed up
|
|
"""
|
|
if not self.is_warmed_up():
|
|
return None
|
|
return self.tr_sum / len(self.true_ranges)
|
|
|
|
def get_state_summary(self) -> dict:
|
|
"""Get detailed state summary for debugging."""
|
|
base_summary = super().get_state_summary()
|
|
base_summary.update({
|
|
'previous_close': self.previous_close,
|
|
'tr_sum': self.tr_sum,
|
|
'true_ranges_count': len(self.true_ranges),
|
|
'current_atr': self.get_current_value()
|
|
})
|
|
return base_summary |