Vasily.onl c9ae507bb7 Implement Incremental Trading Framework
- Introduced a comprehensive framework for incremental trading strategies, including modules for strategy execution, backtesting, and data processing.
- Added key components such as `IncTrader`, `IncBacktester`, and various trading strategies (e.g., `MetaTrendStrategy`, `BBRSStrategy`, `RandomStrategy`) to facilitate real-time trading and backtesting.
- Implemented a robust backtesting framework with configuration management, parallel execution, and result analysis capabilities.
- Developed an incremental indicators framework to support real-time data processing with constant memory usage.
- Enhanced documentation to provide clear usage examples and architecture overview, ensuring maintainability and ease of understanding for future development.
- Ensured compatibility with existing strategies and maintained a focus on performance and scalability throughout the implementation.
2025-05-28 16:29:48 +08:00

207 lines
7.6 KiB
Python

"""
Backtester Configuration
This module provides configuration classes and utilities for backtesting
incremental trading strategies.
"""
import os
import pandas as pd
from dataclasses import dataclass
from typing import Optional, Dict, Any, List
import logging
logger = logging.getLogger(__name__)
@dataclass
class BacktestConfig:
"""
Configuration for backtesting runs.
This class encapsulates all configuration parameters needed for running
backtests, including data settings, trading parameters, and performance options.
Attributes:
data_file: Path to the data file (relative to data directory)
start_date: Start date for backtesting (YYYY-MM-DD format)
end_date: End date for backtesting (YYYY-MM-DD format)
initial_usd: Initial USD balance for trading
timeframe: Data timeframe (e.g., "1min", "5min", "15min")
stop_loss_pct: Default stop loss percentage (0.0 to disable)
take_profit_pct: Default take profit percentage (0.0 to disable)
max_workers: Maximum number of worker processes for parallel execution
chunk_size: Chunk size for data processing
data_dir: Directory containing data files
results_dir: Directory for saving results
Example:
config = BacktestConfig(
data_file="btc_1min_2023.csv",
start_date="2023-01-01",
end_date="2023-12-31",
initial_usd=10000,
stop_loss_pct=0.02
)
"""
data_file: str
start_date: str
end_date: str
initial_usd: float = 10000
timeframe: str = "1min"
# Risk management parameters
stop_loss_pct: float = 0.0
take_profit_pct: float = 0.0
# Performance settings
max_workers: Optional[int] = None
chunk_size: int = 1000
# Directory settings
data_dir: str = "data"
results_dir: str = "results"
def __post_init__(self):
"""Validate configuration after initialization."""
self._validate_config()
self._ensure_directories()
def _validate_config(self):
"""Validate configuration parameters."""
# Validate dates
try:
start_dt = pd.to_datetime(self.start_date)
end_dt = pd.to_datetime(self.end_date)
if start_dt >= end_dt:
raise ValueError("start_date must be before end_date")
except Exception as e:
raise ValueError(f"Invalid date format: {e}")
# Validate financial parameters
if self.initial_usd <= 0:
raise ValueError("initial_usd must be positive")
if not (0 <= self.stop_loss_pct <= 1):
raise ValueError("stop_loss_pct must be between 0 and 1")
if not (0 <= self.take_profit_pct <= 1):
raise ValueError("take_profit_pct must be between 0 and 1")
# Validate performance parameters
if self.max_workers is not None and self.max_workers <= 0:
raise ValueError("max_workers must be positive")
if self.chunk_size <= 0:
raise ValueError("chunk_size must be positive")
def _ensure_directories(self):
"""Ensure required directories exist."""
os.makedirs(self.data_dir, exist_ok=True)
os.makedirs(self.results_dir, exist_ok=True)
def get_data_path(self) -> str:
"""Get full path to data file."""
return os.path.join(self.data_dir, self.data_file)
def get_results_path(self, filename: str) -> str:
"""Get full path for results file."""
return os.path.join(self.results_dir, filename)
def to_dict(self) -> Dict[str, Any]:
"""Convert configuration to dictionary."""
return {
"data_file": self.data_file,
"start_date": self.start_date,
"end_date": self.end_date,
"initial_usd": self.initial_usd,
"timeframe": self.timeframe,
"stop_loss_pct": self.stop_loss_pct,
"take_profit_pct": self.take_profit_pct,
"max_workers": self.max_workers,
"chunk_size": self.chunk_size,
"data_dir": self.data_dir,
"results_dir": self.results_dir
}
@classmethod
def from_dict(cls, config_dict: Dict[str, Any]) -> 'BacktestConfig':
"""Create configuration from dictionary."""
return cls(**config_dict)
def copy(self, **kwargs) -> 'BacktestConfig':
"""Create a copy of the configuration with optional parameter overrides."""
config_dict = self.to_dict()
config_dict.update(kwargs)
return self.from_dict(config_dict)
def __repr__(self) -> str:
"""String representation of the configuration."""
return (f"BacktestConfig(data_file={self.data_file}, "
f"date_range={self.start_date} to {self.end_date}, "
f"initial_usd=${self.initial_usd})")
class OptimizationConfig:
"""
Configuration for parameter optimization runs.
This class provides additional configuration options specifically for
parameter optimization and grid search operations.
"""
def __init__(self,
base_config: BacktestConfig,
strategy_param_grid: Dict[str, List],
trader_param_grid: Optional[Dict[str, List]] = None,
max_workers: Optional[int] = None,
save_individual_results: bool = True,
save_detailed_logs: bool = False):
"""
Initialize optimization configuration.
Args:
base_config: Base backtesting configuration
strategy_param_grid: Grid of strategy parameters to test
trader_param_grid: Grid of trader parameters to test
max_workers: Maximum number of worker processes
save_individual_results: Whether to save individual strategy results
save_detailed_logs: Whether to save detailed action logs
"""
self.base_config = base_config
self.strategy_param_grid = strategy_param_grid
self.trader_param_grid = trader_param_grid or {}
self.max_workers = max_workers
self.save_individual_results = save_individual_results
self.save_detailed_logs = save_detailed_logs
def get_total_combinations(self) -> int:
"""Calculate total number of parameter combinations."""
from itertools import product
# Calculate strategy combinations
strategy_values = list(self.strategy_param_grid.values())
strategy_combinations = len(list(product(*strategy_values))) if strategy_values else 1
# Calculate trader combinations
trader_values = list(self.trader_param_grid.values())
trader_combinations = len(list(product(*trader_values))) if trader_values else 1
return strategy_combinations * trader_combinations
def to_dict(self) -> Dict[str, Any]:
"""Convert optimization configuration to dictionary."""
return {
"base_config": self.base_config.to_dict(),
"strategy_param_grid": self.strategy_param_grid,
"trader_param_grid": self.trader_param_grid,
"max_workers": self.max_workers,
"save_individual_results": self.save_individual_results,
"save_detailed_logs": self.save_detailed_logs,
"total_combinations": self.get_total_combinations()
}
def __repr__(self) -> str:
"""String representation of the optimization configuration."""
return (f"OptimizationConfig(combinations={self.get_total_combinations()}, "
f"max_workers={self.max_workers})")