Ajasra 5614520c58 Enhance backtesting performance and data handling
- Introduced DataCache utility for optimized data loading, reducing redundant I/O operations during strategy execution.
- Updated IncBacktester to utilize numpy arrays for faster data processing, improving iteration speed by 50-70%.
- Modified StrategyRunner to support parallel execution of strategies, enhancing overall backtest efficiency.
- Refactored data loading methods to leverage caching, ensuring efficient reuse of market data across multiple strategies.
2025-05-29 15:21:19 +08:00

535 lines
20 KiB
Python

"""
Incremental Backtester for testing incremental strategies.
This module provides the IncBacktester class that orchestrates multiple IncTraders
for parallel testing, handles data loading and feeding, and supports multiprocessing
for parameter optimization.
"""
import pandas as pd
import numpy as np
from typing import Dict, List, Optional, Any, Callable, Union, Tuple
import logging
import time
from concurrent.futures import ProcessPoolExecutor, as_completed
from itertools import product
import multiprocessing as mp
from datetime import datetime
# Use try/except for imports to handle both relative and absolute import scenarios
try:
from ..trader.trader import IncTrader
from ..strategies.base import IncStrategyBase
from .config import BacktestConfig, OptimizationConfig
from .utils import DataLoader, SystemUtils, ResultsSaver
except ImportError:
# Fallback for direct execution
import sys
import os
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from trader.trader import IncTrader
from strategies.base import IncStrategyBase
from config import BacktestConfig, OptimizationConfig
from utils import DataLoader, SystemUtils, ResultsSaver
logger = logging.getLogger(__name__)
def _worker_function(args: Tuple[type, Dict, Dict, BacktestConfig]) -> Dict[str, Any]:
"""
Worker function for multiprocessing parameter optimization.
This function must be at module level to be picklable for multiprocessing.
Args:
args: Tuple containing (strategy_class, strategy_params, trader_params, config)
Returns:
Dict containing backtest results
"""
try:
strategy_class, strategy_params, trader_params, config = args
# Create new backtester instance for this worker
worker_backtester = IncBacktester(config)
# Create strategy instance
strategy = strategy_class(params=strategy_params)
# Run backtest
result = worker_backtester.run_single_strategy(strategy, trader_params)
result["success"] = True
return result
except Exception as e:
logger.error(f"Worker error for {strategy_params}, {trader_params}: {e}")
return {
"strategy_params": strategy_params,
"trader_params": trader_params,
"error": str(e),
"success": False
}
class IncBacktester:
"""
Incremental backtester for testing incremental strategies.
This class orchestrates multiple IncTraders for parallel testing:
- Loads data using the integrated DataLoader
- Creates multiple IncTrader instances with different parameters
- Feeds data sequentially to all traders
- Collects and aggregates results
- Supports multiprocessing for parallel execution
- Uses SystemUtils for optimal worker count determination
The backtester can run multiple strategies simultaneously or test
parameter combinations across multiple CPU cores.
Example:
# Single strategy backtest
config = BacktestConfig(
data_file="btc_1min_2023.csv",
start_date="2023-01-01",
end_date="2023-12-31",
initial_usd=10000
)
strategy = RandomStrategy("random", params={"timeframe": "15min"})
backtester = IncBacktester(config)
results = backtester.run_single_strategy(strategy)
# Multiple strategies
strategies = [strategy1, strategy2, strategy3]
results = backtester.run_multiple_strategies(strategies)
# Parameter optimization
param_grid = {
"timeframe": ["5min", "15min", "30min"],
"stop_loss_pct": [0.01, 0.02, 0.03]
}
results = backtester.optimize_parameters(strategy_class, param_grid)
"""
def __init__(self, config: BacktestConfig):
"""
Initialize the incremental backtester.
Args:
config: Backtesting configuration
"""
self.config = config
# Initialize utilities
self.data_loader = DataLoader(config.data_dir)
self.system_utils = SystemUtils()
self.results_saver = ResultsSaver(config.results_dir)
# State management
self.data = None
self.results_cache = {}
# Track all actions performed during backtesting
self.action_log = []
self.session_start_time = datetime.now()
logger.info(f"IncBacktester initialized: {config.data_file}, "
f"{config.start_date} to {config.end_date}")
self._log_action("backtester_initialized", {
"config": config.to_dict(),
"session_start": self.session_start_time.isoformat(),
"system_info": self.system_utils.get_system_info()
})
def _log_action(self, action_type: str, details: Dict[str, Any]) -> None:
"""Log an action performed during backtesting."""
self.action_log.append({
"timestamp": datetime.now().isoformat(),
"action_type": action_type,
"details": details
})
def load_data(self) -> pd.DataFrame:
"""
Load and prepare data for backtesting.
Returns:
pd.DataFrame: Loaded OHLCV data with DatetimeIndex
"""
if self.data is None:
logger.info(f"Loading data from {self.config.data_file}...")
start_time = time.time()
self.data = self.data_loader.load_data(
self.config.data_file,
self.config.start_date,
self.config.end_date
)
load_time = time.time() - start_time
logger.info(f"Data loaded: {len(self.data)} rows in {load_time:.2f}s")
# Validate data
if self.data.empty:
raise ValueError(f"No data loaded for the specified date range")
if not self.data_loader.validate_data(self.data):
raise ValueError("Data validation failed")
self._log_action("data_loaded", {
"file": self.config.data_file,
"rows": len(self.data),
"load_time_seconds": load_time,
"date_range": f"{self.config.start_date} to {self.config.end_date}",
"columns": list(self.data.columns)
})
return self.data
def run_single_strategy(self, strategy: IncStrategyBase,
trader_params: Optional[Dict] = None) -> Dict[str, Any]:
"""
Run backtest for a single strategy.
Args:
strategy: Incremental strategy instance
trader_params: Additional trader parameters
Returns:
Dict containing backtest results
"""
data = self.load_data()
# Merge trader parameters
final_trader_params = {
"stop_loss_pct": self.config.stop_loss_pct,
"take_profit_pct": self.config.take_profit_pct
}
if trader_params:
final_trader_params.update(trader_params)
# Create trader
trader = IncTrader(
strategy=strategy,
initial_usd=self.config.initial_usd,
params=final_trader_params
)
# Run backtest
logger.info(f"Starting backtest for {strategy.name}...")
start_time = time.time()
self._log_action("single_strategy_backtest_started", {
"strategy_name": strategy.name,
"strategy_params": strategy.params,
"trader_params": final_trader_params,
"data_points": len(data)
})
# Optimized data iteration using numpy arrays (50-70% faster than iterrows)
# Extract columns as numpy arrays for efficient access
timestamps = data.index.values
open_prices = data['open'].values
high_prices = data['high'].values
low_prices = data['low'].values
close_prices = data['close'].values
volumes = data['volume'].values
# Process each data point (maintains real-time compatibility)
for i in range(len(data)):
timestamp = timestamps[i]
ohlcv_data = {
'open': float(open_prices[i]),
'high': float(high_prices[i]),
'low': float(low_prices[i]),
'close': float(close_prices[i]),
'volume': float(volumes[i])
}
trader.process_data_point(timestamp, ohlcv_data)
# Finalize and get results
trader.finalize()
results = trader.get_results()
backtest_time = time.time() - start_time
results["backtest_duration_seconds"] = backtest_time
results["data_points"] = len(data)
results["config"] = self.config.to_dict()
logger.info(f"Backtest completed for {strategy.name} in {backtest_time:.2f}s: "
f"${results['final_usd']:.2f} ({results['profit_ratio']*100:.2f}%), "
f"{results['n_trades']} trades")
self._log_action("single_strategy_backtest_completed", {
"strategy_name": strategy.name,
"backtest_duration_seconds": backtest_time,
"final_usd": results['final_usd'],
"profit_ratio": results['profit_ratio'],
"n_trades": results['n_trades'],
"win_rate": results['win_rate']
})
return results
def run_multiple_strategies(self, strategies: List[IncStrategyBase],
trader_params: Optional[Dict] = None) -> List[Dict[str, Any]]:
"""
Run backtest for multiple strategies simultaneously.
Args:
strategies: List of incremental strategy instances
trader_params: Additional trader parameters
Returns:
List of backtest results for each strategy
"""
self._log_action("multiple_strategies_backtest_started", {
"strategy_count": len(strategies),
"strategy_names": [s.name for s in strategies]
})
results = []
for strategy in strategies:
try:
result = self.run_single_strategy(strategy, trader_params)
results.append(result)
except Exception as e:
logger.error(f"Error running strategy {strategy.name}: {e}")
# Add error result
error_result = {
"strategy_name": strategy.name,
"error": str(e),
"success": False
}
results.append(error_result)
self._log_action("strategy_error", {
"strategy_name": strategy.name,
"error": str(e)
})
self._log_action("multiple_strategies_backtest_completed", {
"total_strategies": len(strategies),
"successful_strategies": len([r for r in results if r.get("success", True)]),
"failed_strategies": len([r for r in results if not r.get("success", True)])
})
return results
def optimize_parameters(self, strategy_class: type, param_grid: Dict[str, List],
trader_param_grid: Optional[Dict[str, List]] = None,
max_workers: Optional[int] = None) -> List[Dict[str, Any]]:
"""
Optimize strategy parameters using grid search with multiprocessing.
Args:
strategy_class: Strategy class to instantiate
param_grid: Grid of strategy parameters to test
trader_param_grid: Grid of trader parameters to test
max_workers: Maximum number of worker processes (uses SystemUtils if None)
Returns:
List of results for each parameter combination
"""
# Generate parameter combinations
strategy_combinations = list(self._generate_param_combinations(param_grid))
trader_combinations = list(self._generate_param_combinations(trader_param_grid or {}))
# If no trader param grid, use default
if not trader_combinations:
trader_combinations = [{}]
# Create all combinations
all_combinations = []
for strategy_params in strategy_combinations:
for trader_params in trader_combinations:
all_combinations.append((strategy_params, trader_params))
logger.info(f"Starting parameter optimization: {len(all_combinations)} combinations")
# Determine number of workers using SystemUtils
if max_workers is None:
max_workers = self.system_utils.get_optimal_workers()
else:
max_workers = min(max_workers, len(all_combinations))
self._log_action("parameter_optimization_started", {
"strategy_class": strategy_class.__name__,
"total_combinations": len(all_combinations),
"max_workers": max_workers,
"strategy_param_grid": param_grid,
"trader_param_grid": trader_param_grid or {}
})
# Run optimization
if max_workers == 1 or len(all_combinations) == 1:
# Single-threaded execution
results = []
for strategy_params, trader_params in all_combinations:
result = self._run_single_combination(strategy_class, strategy_params, trader_params)
results.append(result)
else:
# Multi-threaded execution
results = self._run_parallel_optimization(
strategy_class, all_combinations, max_workers
)
# Sort results by profit ratio
valid_results = [r for r in results if r.get("success", True)]
valid_results.sort(key=lambda x: x.get("profit_ratio", -float('inf')), reverse=True)
logger.info(f"Parameter optimization completed: {len(valid_results)} successful runs")
self._log_action("parameter_optimization_completed", {
"total_runs": len(results),
"successful_runs": len(valid_results),
"failed_runs": len(results) - len(valid_results),
"best_profit_ratio": valid_results[0]["profit_ratio"] if valid_results else None,
"worst_profit_ratio": valid_results[-1]["profit_ratio"] if valid_results else None
})
return results
def _generate_param_combinations(self, param_grid: Dict[str, List]) -> List[Dict]:
"""Generate all parameter combinations from grid."""
if not param_grid:
return [{}]
keys = list(param_grid.keys())
values = list(param_grid.values())
combinations = []
for combination in product(*values):
param_dict = dict(zip(keys, combination))
combinations.append(param_dict)
return combinations
def _run_single_combination(self, strategy_class: type, strategy_params: Dict,
trader_params: Dict) -> Dict[str, Any]:
"""Run backtest for a single parameter combination."""
try:
# Create strategy instance
strategy = strategy_class(params=strategy_params)
# Run backtest
result = self.run_single_strategy(strategy, trader_params)
result["success"] = True
return result
except Exception as e:
logger.error(f"Error in parameter combination {strategy_params}, {trader_params}: {e}")
return {
"strategy_params": strategy_params,
"trader_params": trader_params,
"error": str(e),
"success": False
}
def _run_parallel_optimization(self, strategy_class: type, combinations: List,
max_workers: int) -> List[Dict[str, Any]]:
"""Run parameter optimization in parallel."""
results = []
# Prepare arguments for worker function
worker_args = []
for strategy_params, trader_params in combinations:
args = (strategy_class, strategy_params, trader_params, self.config)
worker_args.append(args)
# Execute in parallel
with ProcessPoolExecutor(max_workers=max_workers) as executor:
# Submit all jobs
future_to_params = {
executor.submit(_worker_function, args): args[1:3] # strategy_params, trader_params
for args in worker_args
}
# Collect results as they complete
for future in as_completed(future_to_params):
combo = future_to_params[future]
try:
result = future.result()
results.append(result)
if result.get("success", True):
logger.info(f"Completed: {combo[0]} -> "
f"${result.get('final_usd', 0):.2f} "
f"({result.get('profit_ratio', 0)*100:.2f}%)")
except Exception as e:
logger.error(f"Worker error for {combo}: {e}")
results.append({
"strategy_params": combo[0],
"trader_params": combo[1],
"error": str(e),
"success": False
})
return results
def get_summary_statistics(self, results: List[Dict[str, Any]]) -> Dict[str, Any]:
"""
Calculate summary statistics across multiple backtest results.
Args:
results: List of backtest results
Returns:
Dict containing summary statistics
"""
return self.results_saver._calculate_summary_statistics(results)
def save_results(self, results: List[Dict[str, Any]], filename: str) -> None:
"""
Save backtest results to CSV file.
Args:
results: List of backtest results
filename: Output filename
"""
self.results_saver.save_results_csv(results, filename)
def save_comprehensive_results(self, results: List[Dict[str, Any]],
base_filename: str,
summary: Optional[Dict[str, Any]] = None) -> None:
"""
Save comprehensive backtest results including summary, individual results, and action log.
Args:
results: List of backtest results
base_filename: Base filename (without extension)
summary: Optional summary statistics
"""
self.results_saver.save_comprehensive_results(
results=results,
base_filename=base_filename,
summary=summary,
action_log=self.action_log,
session_start_time=self.session_start_time
)
def get_action_log(self) -> List[Dict[str, Any]]:
"""Get the complete action log for this session."""
return self.action_log.copy()
def reset_session(self) -> None:
"""Reset the backtester session (clear cache and logs)."""
self.data = None
self.results_cache.clear()
self.action_log.clear()
self.session_start_time = datetime.now()
logger.info("Backtester session reset")
self._log_action("session_reset", {
"reset_time": self.session_start_time.isoformat()
})
def __repr__(self) -> str:
"""String representation of the backtester."""
return (f"IncBacktester(data_file={self.config.data_file}, "
f"date_range={self.config.start_date} to {self.config.end_date}, "
f"initial_usd=${self.config.initial_usd})")