Cycles/cycles/IncStrategies/bbrs_incremental.py
Vasily.onl bd6a0f05d7 Implement Incremental BBRS Strategy for Real-time Data Processing
- Introduced `BBRSIncrementalState` for real-time processing of the Bollinger Bands + RSI strategy, allowing minute-level data input and internal timeframe aggregation.
- Added `TimeframeAggregator` class to handle real-time data aggregation to higher timeframes (15min, 1h, etc.).
- Updated `README_BBRS.md` to document the new incremental strategy, including key features and usage examples.
- Created comprehensive tests to validate the incremental strategy against the original implementation, ensuring signal accuracy and performance consistency.
- Enhanced error handling and logging for better monitoring during real-time processing.
- Updated `TODO.md` to reflect the completion of the incremental BBRS strategy implementation.
2025-05-26 16:46:04 +08:00

532 lines
20 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""
Incremental BBRS Strategy
This module implements an incremental version of the Bollinger Bands + RSI Strategy (BBRS)
for real-time data processing. It maintains constant memory usage and provides
identical results to the batch implementation after the warm-up period.
Key Features:
- Accepts minute-level data input for real-time compatibility
- Internal timeframe aggregation (1min, 5min, 15min, 1h, etc.)
- Incremental Bollinger Bands calculation
- Incremental RSI calculation with Wilder's smoothing
- Market regime detection (trending vs sideways)
- Real-time signal generation
- Constant memory usage
"""
from typing import Dict, Optional, Union, Tuple
import numpy as np
import pandas as pd
from datetime import datetime, timedelta
from .indicators.bollinger_bands import BollingerBandsState
from .indicators.rsi import RSIState
class TimeframeAggregator:
"""
Handles real-time aggregation of minute data to higher timeframes.
This class accumulates minute-level OHLCV data and produces complete
bars when a timeframe period is completed.
"""
def __init__(self, timeframe_minutes: int = 15):
"""
Initialize timeframe aggregator.
Args:
timeframe_minutes: Target timeframe in minutes (e.g., 60 for 1h, 15 for 15min)
"""
self.timeframe_minutes = timeframe_minutes
self.current_bar = None
self.current_bar_start = None
self.last_completed_bar = None
def update(self, timestamp: pd.Timestamp, ohlcv_data: Dict[str, float]) -> Optional[Dict[str, float]]:
"""
Update with new minute data and return completed bar if timeframe is complete.
Args:
timestamp: Timestamp of the data
ohlcv_data: OHLCV data dictionary
Returns:
Completed OHLCV bar if timeframe period ended, None otherwise
"""
# Calculate which timeframe bar this timestamp belongs to
bar_start = self._get_bar_start_time(timestamp)
# Check if we're starting a new bar
if self.current_bar_start != bar_start:
# Save the completed bar (if any)
completed_bar = self.current_bar.copy() if self.current_bar is not None else None
# Start new bar
self.current_bar_start = bar_start
self.current_bar = {
'timestamp': bar_start,
'open': ohlcv_data['close'], # Use current close as open for new bar
'high': ohlcv_data['close'],
'low': ohlcv_data['close'],
'close': ohlcv_data['close'],
'volume': ohlcv_data['volume']
}
# Return the completed bar (if any)
if completed_bar is not None:
self.last_completed_bar = completed_bar
return completed_bar
else:
# Update current bar with new data
if self.current_bar is not None:
self.current_bar['high'] = max(self.current_bar['high'], ohlcv_data['high'])
self.current_bar['low'] = min(self.current_bar['low'], ohlcv_data['low'])
self.current_bar['close'] = ohlcv_data['close']
self.current_bar['volume'] += ohlcv_data['volume']
return None # No completed bar yet
def _get_bar_start_time(self, timestamp: pd.Timestamp) -> pd.Timestamp:
"""Calculate the start time of the timeframe bar for given timestamp."""
# Round down to the nearest timeframe boundary
minutes_since_midnight = timestamp.hour * 60 + timestamp.minute
bar_minutes = (minutes_since_midnight // self.timeframe_minutes) * self.timeframe_minutes
return timestamp.replace(
hour=bar_minutes // 60,
minute=bar_minutes % 60,
second=0,
microsecond=0
)
def get_current_bar(self) -> Optional[Dict[str, float]]:
"""Get the current incomplete bar (for debugging)."""
return self.current_bar.copy() if self.current_bar is not None else None
def reset(self):
"""Reset aggregator state."""
self.current_bar = None
self.current_bar_start = None
self.last_completed_bar = None
class BBRSIncrementalState:
"""
Incremental BBRS strategy state for real-time processing.
This class maintains all the state needed for the BBRS strategy and can
process new minute-level price data incrementally, internally aggregating
to the configured timeframe before running indicators.
Attributes:
timeframe_minutes (int): Strategy timeframe in minutes (default: 60 for 1h)
bb_period (int): Bollinger Bands period
rsi_period (int): RSI period
bb_width_threshold (float): BB width threshold for market regime detection
trending_bb_multiplier (float): BB multiplier for trending markets
sideways_bb_multiplier (float): BB multiplier for sideways markets
trending_rsi_thresholds (tuple): RSI thresholds for trending markets (low, high)
sideways_rsi_thresholds (tuple): RSI thresholds for sideways markets (low, high)
squeeze_strategy (bool): Enable squeeze strategy
Example:
# Initialize strategy for 1-hour timeframe
config = {
"timeframe_minutes": 60, # 1 hour bars
"bb_period": 20,
"rsi_period": 14,
"bb_width": 0.05,
"trending": {
"bb_std_dev_multiplier": 2.5,
"rsi_threshold": [30, 70]
},
"sideways": {
"bb_std_dev_multiplier": 1.8,
"rsi_threshold": [40, 60]
},
"SqueezeStrategy": True
}
strategy = BBRSIncrementalState(config)
# Process minute-level data in real-time
for minute_data in live_data_stream:
result = strategy.update_minute_data(minute_data['timestamp'], minute_data)
if result is not None: # New timeframe bar completed
if result['buy_signal']:
print("Buy signal generated!")
"""
def __init__(self, config: Dict):
"""
Initialize incremental BBRS strategy.
Args:
config: Strategy configuration dictionary
"""
# Store configuration
self.timeframe_minutes = config.get("timeframe_minutes", 60) # Default to 1 hour
self.bb_period = config.get("bb_period", 20)
self.rsi_period = config.get("rsi_period", 14)
self.bb_width_threshold = config.get("bb_width", 0.05)
# Market regime specific parameters
trending_config = config.get("trending", {})
sideways_config = config.get("sideways", {})
self.trending_bb_multiplier = trending_config.get("bb_std_dev_multiplier", 2.5)
self.sideways_bb_multiplier = sideways_config.get("bb_std_dev_multiplier", 1.8)
self.trending_rsi_thresholds = tuple(trending_config.get("rsi_threshold", [30, 70]))
self.sideways_rsi_thresholds = tuple(sideways_config.get("rsi_threshold", [40, 60]))
self.squeeze_strategy = config.get("SqueezeStrategy", True)
# Initialize timeframe aggregator
self.aggregator = TimeframeAggregator(self.timeframe_minutes)
# Initialize indicators with different multipliers for regime detection
self.bb_trending = BollingerBandsState(self.bb_period, self.trending_bb_multiplier)
self.bb_sideways = BollingerBandsState(self.bb_period, self.sideways_bb_multiplier)
self.bb_reference = BollingerBandsState(self.bb_period, 2.0) # For regime detection
self.rsi = RSIState(self.rsi_period)
# State tracking
self.bars_processed = 0
self.current_price = None
self.current_volume = None
self.volume_ma = None
self.volume_sum = 0.0
self.volume_history = [] # For volume MA calculation
# Signal state
self.last_buy_signal = False
self.last_sell_signal = False
self.last_result = None
def update_minute_data(self, timestamp: pd.Timestamp, ohlcv_data: Dict[str, float]) -> Optional[Dict[str, Union[float, bool]]]:
"""
Update strategy with new minute-level OHLCV data.
This method accepts minute-level data and internally aggregates to the
configured timeframe. It only processes indicators and generates signals
when a complete timeframe bar is formed.
Args:
timestamp: Timestamp of the minute data
ohlcv_data: Dictionary with 'open', 'high', 'low', 'close', 'volume'
Returns:
Strategy result dictionary if a timeframe bar completed, None otherwise
"""
# Validate input
required_keys = ['open', 'high', 'low', 'close', 'volume']
for key in required_keys:
if key not in ohlcv_data:
raise ValueError(f"Missing required key: {key}")
# Update timeframe aggregator
completed_bar = self.aggregator.update(timestamp, ohlcv_data)
if completed_bar is not None:
# Process the completed timeframe bar
return self._process_timeframe_bar(completed_bar)
return None # No completed bar yet
def update(self, ohlcv_data: Dict[str, float]) -> Dict[str, Union[float, bool]]:
"""
Update strategy with pre-aggregated timeframe data (for testing/compatibility).
This method is for backward compatibility and testing with pre-aggregated data.
For real-time use, prefer update_minute_data().
Args:
ohlcv_data: Dictionary with 'open', 'high', 'low', 'close', 'volume'
Returns:
Strategy result dictionary
"""
# Create a fake timestamp for compatibility
fake_timestamp = pd.Timestamp.now()
# Process directly as a completed bar
completed_bar = {
'timestamp': fake_timestamp,
'open': ohlcv_data['open'],
'high': ohlcv_data['high'],
'low': ohlcv_data['low'],
'close': ohlcv_data['close'],
'volume': ohlcv_data['volume']
}
return self._process_timeframe_bar(completed_bar)
def _process_timeframe_bar(self, bar_data: Dict[str, float]) -> Dict[str, Union[float, bool]]:
"""
Process a completed timeframe bar and generate signals.
Args:
bar_data: Completed timeframe bar data
Returns:
Strategy result dictionary
"""
close_price = float(bar_data['close'])
volume = float(bar_data['volume'])
# Update indicators
bb_trending_result = self.bb_trending.update(close_price)
bb_sideways_result = self.bb_sideways.update(close_price)
bb_reference_result = self.bb_reference.update(close_price)
rsi_value = self.rsi.update(close_price)
# Update volume tracking
self._update_volume_tracking(volume)
# Determine market regime
market_regime = self._determine_market_regime(bb_reference_result)
# Select appropriate BB values based on regime
if market_regime == "sideways":
bb_result = bb_sideways_result
rsi_thresholds = self.sideways_rsi_thresholds
else: # trending
bb_result = bb_trending_result
rsi_thresholds = self.trending_rsi_thresholds
# Generate signals
buy_signal, sell_signal = self._generate_signals(
close_price, volume, bb_result, rsi_value,
market_regime, rsi_thresholds
)
# Update state
self.current_price = close_price
self.current_volume = volume
self.bars_processed += 1
self.last_buy_signal = buy_signal
self.last_sell_signal = sell_signal
# Create comprehensive result
result = {
# Timeframe info
'timestamp': bar_data['timestamp'],
'timeframe_minutes': self.timeframe_minutes,
# Price data
'open': bar_data['open'],
'high': bar_data['high'],
'low': bar_data['low'],
'close': close_price,
'volume': volume,
# Bollinger Bands (regime-specific)
'upper_band': bb_result['upper_band'],
'middle_band': bb_result['middle_band'],
'lower_band': bb_result['lower_band'],
'bb_width': bb_result['bandwidth'],
# RSI
'rsi': rsi_value,
# Market regime
'market_regime': market_regime,
'bb_width_reference': bb_reference_result['bandwidth'],
# Volume analysis
'volume_ma': self.volume_ma,
'volume_spike': self._check_volume_spike(volume),
# Signals
'buy_signal': buy_signal,
'sell_signal': sell_signal,
# Strategy metadata
'is_warmed_up': self.is_warmed_up(),
'bars_processed': self.bars_processed,
'rsi_thresholds': rsi_thresholds,
'bb_multiplier': bb_result.get('std_dev', self.trending_bb_multiplier)
}
self.last_result = result
return result
def _update_volume_tracking(self, volume: float) -> None:
"""Update volume moving average tracking."""
# Simple moving average for volume (20 periods)
volume_period = 20
if len(self.volume_history) >= volume_period:
# Remove oldest volume
self.volume_sum -= self.volume_history[0]
self.volume_history.pop(0)
# Add new volume
self.volume_history.append(volume)
self.volume_sum += volume
# Calculate moving average
if len(self.volume_history) > 0:
self.volume_ma = self.volume_sum / len(self.volume_history)
else:
self.volume_ma = volume
def _determine_market_regime(self, bb_reference: Dict[str, float]) -> str:
"""
Determine market regime based on Bollinger Band width.
Args:
bb_reference: Reference BB result for regime detection
Returns:
"sideways" or "trending"
"""
if not self.bb_reference.is_warmed_up():
return "trending" # Default to trending during warm-up
bb_width = bb_reference['bandwidth']
if bb_width < self.bb_width_threshold:
return "sideways"
else:
return "trending"
def _check_volume_spike(self, current_volume: float) -> bool:
"""Check if current volume represents a spike (≥1.5× average)."""
if self.volume_ma is None or self.volume_ma == 0:
return False
return current_volume >= 1.5 * self.volume_ma
def _generate_signals(self, price: float, volume: float, bb_result: Dict[str, float],
rsi_value: float, market_regime: str,
rsi_thresholds: Tuple[float, float]) -> Tuple[bool, bool]:
"""
Generate buy/sell signals based on strategy logic.
Args:
price: Current close price
volume: Current volume
bb_result: Bollinger Bands result
rsi_value: Current RSI value
market_regime: "sideways" or "trending"
rsi_thresholds: (low_threshold, high_threshold)
Returns:
(buy_signal, sell_signal)
"""
# Don't generate signals during warm-up
if not self.is_warmed_up():
return False, False
# Don't generate signals if RSI is NaN
if np.isnan(rsi_value):
return False, False
upper_band = bb_result['upper_band']
lower_band = bb_result['lower_band']
rsi_low, rsi_high = rsi_thresholds
volume_spike = self._check_volume_spike(volume)
buy_signal = False
sell_signal = False
if market_regime == "sideways":
# Sideways market (Mean Reversion)
buy_condition = (price <= lower_band) and (rsi_value <= rsi_low)
sell_condition = (price >= upper_band) and (rsi_value >= rsi_high)
if self.squeeze_strategy:
# Add volume contraction filter for sideways markets
volume_contraction = volume < 0.7 * (self.volume_ma or volume)
buy_condition = buy_condition and volume_contraction
sell_condition = sell_condition and volume_contraction
buy_signal = buy_condition
sell_signal = sell_condition
else: # trending
# Trending market (Breakout Mode)
buy_condition = (price < lower_band) and (rsi_value < 50) and volume_spike
sell_condition = (price > upper_band) and (rsi_value > 50) and volume_spike
buy_signal = buy_condition
sell_signal = sell_condition
return buy_signal, sell_signal
def is_warmed_up(self) -> bool:
"""
Check if strategy is warmed up and ready for reliable signals.
Returns:
True if all indicators are warmed up
"""
return (self.bb_trending.is_warmed_up() and
self.bb_sideways.is_warmed_up() and
self.bb_reference.is_warmed_up() and
self.rsi.is_warmed_up() and
len(self.volume_history) >= 20)
def get_current_incomplete_bar(self) -> Optional[Dict[str, float]]:
"""
Get the current incomplete timeframe bar (for monitoring).
Returns:
Current incomplete bar data or None
"""
return self.aggregator.get_current_bar()
def reset(self) -> None:
"""Reset strategy state to initial conditions."""
self.aggregator.reset()
self.bb_trending.reset()
self.bb_sideways.reset()
self.bb_reference.reset()
self.rsi.reset()
self.bars_processed = 0
self.current_price = None
self.current_volume = None
self.volume_ma = None
self.volume_sum = 0.0
self.volume_history.clear()
self.last_buy_signal = False
self.last_sell_signal = False
self.last_result = None
def get_state_summary(self) -> Dict:
"""Get comprehensive state summary for debugging."""
return {
'strategy_type': 'BBRS_Incremental',
'timeframe_minutes': self.timeframe_minutes,
'bars_processed': self.bars_processed,
'is_warmed_up': self.is_warmed_up(),
'current_price': self.current_price,
'current_volume': self.current_volume,
'volume_ma': self.volume_ma,
'current_incomplete_bar': self.get_current_incomplete_bar(),
'last_signals': {
'buy': self.last_buy_signal,
'sell': self.last_sell_signal
},
'indicators': {
'bb_trending': self.bb_trending.get_state_summary(),
'bb_sideways': self.bb_sideways.get_state_summary(),
'bb_reference': self.bb_reference.get_state_summary(),
'rsi': self.rsi.get_state_summary()
},
'config': {
'bb_period': self.bb_period,
'rsi_period': self.rsi_period,
'bb_width_threshold': self.bb_width_threshold,
'trending_bb_multiplier': self.trending_bb_multiplier,
'sideways_bb_multiplier': self.sideways_bb_multiplier,
'trending_rsi_thresholds': self.trending_rsi_thresholds,
'sideways_rsi_thresholds': self.sideways_rsi_thresholds,
'squeeze_strategy': self.squeeze_strategy
}
}