Cycles/trend_detector_simple.py

142 lines
4.9 KiB
Python

import pandas as pd
import numpy as np
import logging
from scipy.signal import find_peaks
import matplotlib.dates as mdates
class TrendDetectorSimple:
def __init__(self, data, verbose=False):
"""
Initialize the TrendDetectorSimple class.
Parameters:
- data: pandas DataFrame containing price data
- verbose: boolean, whether to display detailed logging information
"""
self.data = data
self.verbose = verbose
# Configure logging
logging.basicConfig(level=logging.INFO if verbose else logging.WARNING,
format='%(asctime)s - %(levelname)s - %(message)s')
self.logger = logging.getLogger('TrendDetectorSimple')
# Convert data to pandas DataFrame if it's not already
if not isinstance(self.data, pd.DataFrame):
if isinstance(self.data, list):
self.logger.info("Converting list to DataFrame")
self.data = pd.DataFrame({'close': self.data})
else:
self.logger.error("Invalid data format provided")
raise ValueError("Data must be a pandas DataFrame or a list")
self.logger.info(f"Initialized TrendDetectorSimple with {len(self.data)} data points")
def detect_trends(self):
"""
Detect trends by identifying local minima and maxima in the price data
using scipy.signal.find_peaks.
Parameters:
- prominence: float, required prominence of peaks (relative to the price range)
- width: int, required width of peaks in data points
Returns:
- DataFrame with columns for timestamps, prices, and trend indicators
"""
self.logger.info(f"Detecting trends")
df = self.data.copy()
close_prices = df['close'].values
max_peaks, _ = find_peaks(close_prices)
min_peaks, _ = find_peaks(-close_prices)
self.logger.info(f"Found {len(min_peaks)} local minima and {len(max_peaks)} local maxima")
df['is_min'] = False
df['is_max'] = False
for peak in max_peaks:
df.at[peak, 'is_max'] = True
for peak in min_peaks:
df.at[peak, 'is_min'] = True
result = df[['datetime', 'close', 'is_min', 'is_max']]
return result
def plot_trends(self, trend_data):
"""
Plot the price data with detected trends using a candlestick chart.
Parameters:
- trend_data: DataFrame, the output from detect_trends(). If None, detect_trends() will be called.
Returns:
- None (displays the plot)
"""
import matplotlib.pyplot as plt
from matplotlib.patches import Rectangle
# Create the figure and axis
fig, ax = plt.subplots(figsize=(12, 8))
# Create a copy of the data
df = self.data.copy()
# Plot candlestick chart
up_color = 'green'
down_color = 'red'
# Draw candlesticks manually
width = 0.6
x_values = range(len(df))
for i in range(len(df)):
# Get OHLC values for this candle
open_val = df['open'].iloc[i]
close_val = df['close'].iloc[i]
high_val = df['high'].iloc[i]
low_val = df['low'].iloc[i]
# Determine candle color
color = up_color if close_val >= open_val else down_color
# Plot candle body
body_height = abs(close_val - open_val)
bottom = min(open_val, close_val)
rect = Rectangle((i - width/2, bottom), width, body_height, color=color, alpha=0.8)
ax.add_patch(rect)
# Plot candle wicks
ax.plot([i, i], [low_val, high_val], color='black', linewidth=1)
min_indices = trend_data.index[trend_data['is_min'] == True].tolist()
if min_indices:
min_y = [df['close'].iloc[i] for i in min_indices]
ax.scatter(min_indices, min_y, color='black', s=200, marker='^', label='Local Minima', zorder=100)
max_indices = trend_data.index[trend_data['is_max'] == True].tolist()
if max_indices:
max_y = [df['close'].iloc[i] for i in max_indices]
ax.scatter(max_indices, max_y, color='black', s=200, marker='v', label='Local Maxima', zorder=100)
# Set title and labels
ax.set_title('Price Candlestick Chart with Local Minima and Maxima', fontsize=14)
ax.set_xlabel('Date', fontsize=12)
ax.set_ylabel('Price', fontsize=12)
# Set appropriate x-axis limits
ax.set_xlim(-0.5, len(df) - 0.5)
# Add a legend
ax.legend(loc='best')
# Adjust layout
plt.tight_layout()
# Show the plot
plt.show()