Cycles/cycles/Analysis/strategies.py

166 lines
7.9 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import pandas as pd
import numpy as np
from cycles.Analysis.boillinger_band import BollingerBands
from cycles.Analysis.rsi import RSI
from cycles.utils.data_utils import aggregate_to_daily
class Strategy:
def __init__(self, config = None, logging = None):
if config is None:
raise ValueError("Config must be provided.")
self.config = config
self.logging = logging
def run(self, data, strategy_name):
if strategy_name == "MarketRegimeStrategy":
return self.MarketRegimeStrategy(data)
else:
if self.logging is not None:
self.logging.warning(f"Strategy {strategy_name} not found. Using no_strategy instead.")
return self.no_strategy(data)
def no_strategy(self, data):
"""No strategy: returns False for both buy and sell conditions"""
buy_condition = pd.Series([False] * len(data), index=data.index)
sell_condition = pd.Series([False] * len(data), index=data.index)
return buy_condition, sell_condition
def rsi_bollinger_confirmation(self, rsi, window=14, std_mult=1.5):
"""Calculate RSI Bollinger Bands for confirmation
Args:
rsi (Series): RSI values
window (int): Rolling window for SMA
std_mult (float): Standard deviation multiplier
Returns:
tuple: (oversold condition, overbought condition)
"""
valid_rsi = ~rsi.isna()
if not valid_rsi.any():
# Return empty Series if no valid RSI data
return pd.Series(False, index=rsi.index), pd.Series(False, index=rsi.index)
rsi_sma = rsi.rolling(window).mean()
rsi_std = rsi.rolling(window).std()
upper_rsi_band = rsi_sma + std_mult * rsi_std
lower_rsi_band = rsi_sma - std_mult * rsi_std
return (rsi < lower_rsi_band), (rsi > upper_rsi_band)
def MarketRegimeStrategy(self, data):
"""Optimized Bollinger Bands + RSI Strategy for Crypto Trading (Including Sideways Markets)
with adaptive Bollinger Bands
This advanced strategy combines volatility analysis, momentum confirmation, and regime detection
to adapt to Bitcoin's unique market conditions.
Entry Conditions:
- Trending Market (Breakout Mode):
Buy: Price < Lower Band ∧ RSI < 50 ∧ Volume Spike (≥1.5× 20D Avg)
Sell: Price > Upper Band ∧ RSI > 50 ∧ Volume Spike
- Sideways Market (Mean Reversion):
Buy: Price ≤ Lower Band ∧ RSI ≤ 40
Sell: Price ≥ Upper Band ∧ RSI ≥ 60
Enhanced with RSI Bollinger Squeeze for signal confirmation when enabled.
Returns:
DataFrame: A unified DataFrame containing original data, BB, RSI, and signals.
"""
data = aggregate_to_daily(data)
# Calculate Bollinger Bands
bb_calculator = BollingerBands(config=self.config)
# Ensure we are working with a copy to avoid modifying the original DataFrame upstream
data_bb = bb_calculator.calculate(data.copy())
# Calculate RSI
rsi_calculator = RSI(config=self.config)
# Use the original data's copy for RSI calculation as well, to maintain index integrity
data_with_rsi = rsi_calculator.calculate(data.copy(), price_column='close')
# Combine BB and RSI data into a single DataFrame for signal generation
# Ensure indices are aligned; they should be as both are from data.copy()
if 'RSI' in data_with_rsi.columns:
data_bb['RSI'] = data_with_rsi['RSI']
else:
# If RSI wasn't calculated (e.g., not enough data), create a dummy column with NaNs
# to prevent errors later, though signals won't be generated.
data_bb['RSI'] = pd.Series(index=data_bb.index, dtype=float)
if self.logging:
self.logging.warning("RSI column not found or not calculated. Signals relying on RSI may not be generated.")
# Initialize conditions as all False
buy_condition = pd.Series(False, index=data_bb.index)
sell_condition = pd.Series(False, index=data_bb.index)
# Create masks for different market regimes
# MarketRegime is expected to be in data_bb from BollingerBands calculation
sideways_mask = data_bb['MarketRegime'] > 0
trending_mask = data_bb['MarketRegime'] <= 0
valid_data_mask = ~data_bb['MarketRegime'].isna() # Handle potential NaN values
# Calculate volume spike (≥1.5× 20D Avg)
# 'volume' column should be present in the input 'data', and thus in 'data_bb'
if 'volume' in data_bb.columns:
volume_20d_avg = data_bb['volume'].rolling(window=20).mean()
volume_spike = data_bb['volume'] >= 1.5 * volume_20d_avg
# Additional volume contraction filter for sideways markets
volume_30d_avg = data_bb['volume'].rolling(window=30).mean()
volume_contraction = data_bb['volume'] < 0.7 * volume_30d_avg
else:
# If volume data is not available, assume no volume spike
volume_spike = pd.Series(False, index=data_bb.index)
volume_contraction = pd.Series(False, index=data_bb.index)
if self.logging is not None:
self.logging.warning("Volume data not available. Volume conditions will not be triggered.")
# Calculate RSI Bollinger Squeeze confirmation
# RSI column is now part of data_bb
if 'RSI' in data_bb.columns and not data_bb['RSI'].isna().all():
oversold_rsi, overbought_rsi = self.rsi_bollinger_confirmation(data_bb['RSI'])
else:
oversold_rsi = pd.Series(False, index=data_bb.index)
overbought_rsi = pd.Series(False, index=data_bb.index)
if self.logging is not None and ('RSI' not in data_bb.columns or data_bb['RSI'].isna().all()):
self.logging.warning("RSI data not available or all NaN. RSI Bollinger Squeeze will not be triggered.")
# Calculate conditions for sideways market (Mean Reversion)
if sideways_mask.any():
sideways_buy = (data_bb['close'] <= data_bb['LowerBand']) & (data_bb['RSI'] <= 40)
sideways_sell = (data_bb['close'] >= data_bb['UpperBand']) & (data_bb['RSI'] >= 60)
# Add enhanced confirmation for sideways markets
if self.config.get("SqueezeStrategy", False):
sideways_buy = sideways_buy & oversold_rsi & volume_contraction
sideways_sell = sideways_sell & overbought_rsi & volume_contraction
# Apply only where market is sideways and data is valid
buy_condition = buy_condition | (sideways_buy & sideways_mask & valid_data_mask)
sell_condition = sell_condition | (sideways_sell & sideways_mask & valid_data_mask)
# Calculate conditions for trending market (Breakout Mode)
if trending_mask.any():
trending_buy = (data_bb['close'] < data_bb['LowerBand']) & (data_bb['RSI'] < 50) & volume_spike
trending_sell = (data_bb['close'] > data_bb['UpperBand']) & (data_bb['RSI'] > 50) & volume_spike
# Add enhanced confirmation for trending markets
if self.config.get("SqueezeStrategy", False):
trending_buy = trending_buy & oversold_rsi
trending_sell = trending_sell & overbought_rsi
# Apply only where market is trending and data is valid
buy_condition = buy_condition | (trending_buy & trending_mask & valid_data_mask)
sell_condition = sell_condition | (trending_sell & trending_mask & valid_data_mask)
# Add buy/sell conditions as columns to the DataFrame
data_bb['BuySignal'] = buy_condition
data_bb['SellSignal'] = sell_condition
return data_bb