166 lines
7.9 KiB
Python
166 lines
7.9 KiB
Python
import pandas as pd
|
||
import numpy as np
|
||
|
||
from cycles.Analysis.boillinger_band import BollingerBands
|
||
from cycles.Analysis.rsi import RSI
|
||
from cycles.utils.data_utils import aggregate_to_daily
|
||
|
||
|
||
class Strategy:
|
||
|
||
def __init__(self, config = None, logging = None):
|
||
if config is None:
|
||
raise ValueError("Config must be provided.")
|
||
self.config = config
|
||
self.logging = logging
|
||
|
||
def run(self, data, strategy_name):
|
||
if strategy_name == "MarketRegimeStrategy":
|
||
return self.MarketRegimeStrategy(data)
|
||
else:
|
||
if self.logging is not None:
|
||
self.logging.warning(f"Strategy {strategy_name} not found. Using no_strategy instead.")
|
||
return self.no_strategy(data)
|
||
|
||
def no_strategy(self, data):
|
||
"""No strategy: returns False for both buy and sell conditions"""
|
||
buy_condition = pd.Series([False] * len(data), index=data.index)
|
||
sell_condition = pd.Series([False] * len(data), index=data.index)
|
||
return buy_condition, sell_condition
|
||
|
||
def rsi_bollinger_confirmation(self, rsi, window=14, std_mult=1.5):
|
||
"""Calculate RSI Bollinger Bands for confirmation
|
||
|
||
Args:
|
||
rsi (Series): RSI values
|
||
window (int): Rolling window for SMA
|
||
std_mult (float): Standard deviation multiplier
|
||
|
||
Returns:
|
||
tuple: (oversold condition, overbought condition)
|
||
"""
|
||
valid_rsi = ~rsi.isna()
|
||
if not valid_rsi.any():
|
||
# Return empty Series if no valid RSI data
|
||
return pd.Series(False, index=rsi.index), pd.Series(False, index=rsi.index)
|
||
|
||
rsi_sma = rsi.rolling(window).mean()
|
||
rsi_std = rsi.rolling(window).std()
|
||
upper_rsi_band = rsi_sma + std_mult * rsi_std
|
||
lower_rsi_band = rsi_sma - std_mult * rsi_std
|
||
|
||
return (rsi < lower_rsi_band), (rsi > upper_rsi_band)
|
||
|
||
def MarketRegimeStrategy(self, data):
|
||
"""Optimized Bollinger Bands + RSI Strategy for Crypto Trading (Including Sideways Markets)
|
||
with adaptive Bollinger Bands
|
||
|
||
This advanced strategy combines volatility analysis, momentum confirmation, and regime detection
|
||
to adapt to Bitcoin's unique market conditions.
|
||
|
||
Entry Conditions:
|
||
- Trending Market (Breakout Mode):
|
||
Buy: Price < Lower Band ∧ RSI < 50 ∧ Volume Spike (≥1.5× 20D Avg)
|
||
Sell: Price > Upper Band ∧ RSI > 50 ∧ Volume Spike
|
||
- Sideways Market (Mean Reversion):
|
||
Buy: Price ≤ Lower Band ∧ RSI ≤ 40
|
||
Sell: Price ≥ Upper Band ∧ RSI ≥ 60
|
||
|
||
Enhanced with RSI Bollinger Squeeze for signal confirmation when enabled.
|
||
|
||
Returns:
|
||
DataFrame: A unified DataFrame containing original data, BB, RSI, and signals.
|
||
"""
|
||
|
||
data = aggregate_to_daily(data)
|
||
|
||
# Calculate Bollinger Bands
|
||
bb_calculator = BollingerBands(config=self.config)
|
||
# Ensure we are working with a copy to avoid modifying the original DataFrame upstream
|
||
data_bb = bb_calculator.calculate(data.copy())
|
||
|
||
# Calculate RSI
|
||
rsi_calculator = RSI(config=self.config)
|
||
# Use the original data's copy for RSI calculation as well, to maintain index integrity
|
||
data_with_rsi = rsi_calculator.calculate(data.copy(), price_column='close')
|
||
|
||
# Combine BB and RSI data into a single DataFrame for signal generation
|
||
# Ensure indices are aligned; they should be as both are from data.copy()
|
||
if 'RSI' in data_with_rsi.columns:
|
||
data_bb['RSI'] = data_with_rsi['RSI']
|
||
else:
|
||
# If RSI wasn't calculated (e.g., not enough data), create a dummy column with NaNs
|
||
# to prevent errors later, though signals won't be generated.
|
||
data_bb['RSI'] = pd.Series(index=data_bb.index, dtype=float)
|
||
if self.logging:
|
||
self.logging.warning("RSI column not found or not calculated. Signals relying on RSI may not be generated.")
|
||
|
||
# Initialize conditions as all False
|
||
buy_condition = pd.Series(False, index=data_bb.index)
|
||
sell_condition = pd.Series(False, index=data_bb.index)
|
||
|
||
# Create masks for different market regimes
|
||
# MarketRegime is expected to be in data_bb from BollingerBands calculation
|
||
sideways_mask = data_bb['MarketRegime'] > 0
|
||
trending_mask = data_bb['MarketRegime'] <= 0
|
||
valid_data_mask = ~data_bb['MarketRegime'].isna() # Handle potential NaN values
|
||
|
||
# Calculate volume spike (≥1.5× 20D Avg)
|
||
# 'volume' column should be present in the input 'data', and thus in 'data_bb'
|
||
if 'volume' in data_bb.columns:
|
||
volume_20d_avg = data_bb['volume'].rolling(window=20).mean()
|
||
volume_spike = data_bb['volume'] >= 1.5 * volume_20d_avg
|
||
|
||
# Additional volume contraction filter for sideways markets
|
||
volume_30d_avg = data_bb['volume'].rolling(window=30).mean()
|
||
volume_contraction = data_bb['volume'] < 0.7 * volume_30d_avg
|
||
else:
|
||
# If volume data is not available, assume no volume spike
|
||
volume_spike = pd.Series(False, index=data_bb.index)
|
||
volume_contraction = pd.Series(False, index=data_bb.index)
|
||
if self.logging is not None:
|
||
self.logging.warning("Volume data not available. Volume conditions will not be triggered.")
|
||
|
||
# Calculate RSI Bollinger Squeeze confirmation
|
||
# RSI column is now part of data_bb
|
||
if 'RSI' in data_bb.columns and not data_bb['RSI'].isna().all():
|
||
oversold_rsi, overbought_rsi = self.rsi_bollinger_confirmation(data_bb['RSI'])
|
||
else:
|
||
oversold_rsi = pd.Series(False, index=data_bb.index)
|
||
overbought_rsi = pd.Series(False, index=data_bb.index)
|
||
if self.logging is not None and ('RSI' not in data_bb.columns or data_bb['RSI'].isna().all()):
|
||
self.logging.warning("RSI data not available or all NaN. RSI Bollinger Squeeze will not be triggered.")
|
||
|
||
# Calculate conditions for sideways market (Mean Reversion)
|
||
if sideways_mask.any():
|
||
sideways_buy = (data_bb['close'] <= data_bb['LowerBand']) & (data_bb['RSI'] <= 40)
|
||
sideways_sell = (data_bb['close'] >= data_bb['UpperBand']) & (data_bb['RSI'] >= 60)
|
||
|
||
# Add enhanced confirmation for sideways markets
|
||
if self.config.get("SqueezeStrategy", False):
|
||
sideways_buy = sideways_buy & oversold_rsi & volume_contraction
|
||
sideways_sell = sideways_sell & overbought_rsi & volume_contraction
|
||
|
||
# Apply only where market is sideways and data is valid
|
||
buy_condition = buy_condition | (sideways_buy & sideways_mask & valid_data_mask)
|
||
sell_condition = sell_condition | (sideways_sell & sideways_mask & valid_data_mask)
|
||
|
||
# Calculate conditions for trending market (Breakout Mode)
|
||
if trending_mask.any():
|
||
trending_buy = (data_bb['close'] < data_bb['LowerBand']) & (data_bb['RSI'] < 50) & volume_spike
|
||
trending_sell = (data_bb['close'] > data_bb['UpperBand']) & (data_bb['RSI'] > 50) & volume_spike
|
||
|
||
# Add enhanced confirmation for trending markets
|
||
if self.config.get("SqueezeStrategy", False):
|
||
trending_buy = trending_buy & oversold_rsi
|
||
trending_sell = trending_sell & overbought_rsi
|
||
|
||
# Apply only where market is trending and data is valid
|
||
buy_condition = buy_condition | (trending_buy & trending_mask & valid_data_mask)
|
||
sell_condition = sell_condition | (trending_sell & trending_mask & valid_data_mask)
|
||
|
||
# Add buy/sell conditions as columns to the DataFrame
|
||
data_bb['BuySignal'] = buy_condition
|
||
data_bb['SellSignal'] = sell_condition
|
||
|
||
return data_bb |