Cycles/Dockerfile
Simon Moisy f7f0fc6dd5 Cleanup
2025-05-17 14:48:30 +08:00

45 lines
1.7 KiB
Docker

# Use the base image with CUDA and PyTorch
FROM kom4cr0/cuda11.7-pytorch1.13-mamba1.1.1:1.1.1
# Install NVIDIA Container Toolkit (necessary for GPU support)
RUN apt-get update && apt-get install -y \
nvidia-container-runtime \
python3 \
python3-pip \
&& rm -rf /var/lib/apt/lists/*
# Install necessary dependencies and configure NVIDIA repository
RUN apt-get update && apt-get install -y \
curl \
gnupg \
lsb-release \
sudo \
&& curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \
&& curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list | \
sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \
tee /etc/apt/sources.list.d/nvidia-container-toolkit.list \
&& sed -i -e '/experimental/ s/^#//g' /etc/apt/sources.list.d/nvidia-container-toolkit.list \
&& apt-get update
# Install NVIDIA Container Toolkit
RUN apt-get install -y nvidia-container-toolkit
# Set the environment variables for CUDA
ENV PATH=/usr/local/cuda-11.7/bin:$PATH
ENV LD_LIBRARY_PATH=/usr/local/cuda-11.7/lib64:$LD_LIBRARY_PATH
# Set the runtime for GPU (requires NVIDIA runtime to be installed on the host machine)
ENV NVIDIA_VISIBLE_DEVICES=all
ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility
# Set working directory to /projects
WORKDIR /project
# Install necessary Python dependencies
# Uncomment and modify the next lines as per your project requirements
COPY requirements.txt requirements.txt
RUN pip3 install -r requirements.txt
# Run your Python script
CMD ["python3", "main.py"]