""" Incremental Strategies Module This module contains the incremental calculation implementation of trading strategies that support real-time data processing with efficient memory usage and performance. The incremental strategies are designed to: - Process new data points incrementally without full recalculation - Maintain bounded memory usage regardless of data history length - Provide identical results to batch calculations - Support real-time trading with minimal latency Classes: IncStrategyBase: Base class for all incremental strategies IncRandomStrategy: Incremental implementation of random strategy for testing IncMetaTrendStrategy: Incremental implementation of the MetaTrend strategy IncDefaultStrategy: Incremental implementation of the default Supertrend strategy IncBBRSStrategy: Incremental implementation of Bollinger Bands + RSI strategy IncStrategyManager: Manager for coordinating multiple incremental strategies """ from .base import IncStrategyBase, IncStrategySignal from .random_strategy import IncRandomStrategy from .metatrend_strategy import IncMetaTrendStrategy, MetaTrendStrategy # Note: These will be implemented in subsequent phases # from .default_strategy import IncDefaultStrategy # from .bbrs_strategy import IncBBRSStrategy # from .manager import IncStrategyManager # Strategy registry for easy access AVAILABLE_STRATEGIES = { 'random': IncRandomStrategy, 'metatrend': IncMetaTrendStrategy, 'meta_trend': IncMetaTrendStrategy, # Alternative name # 'default': IncDefaultStrategy, # 'bbrs': IncBBRSStrategy, } __all__ = [ 'IncStrategyBase', 'IncStrategySignal', 'IncRandomStrategy', 'IncMetaTrendStrategy', 'MetaTrendStrategy', 'AVAILABLE_STRATEGIES' # 'IncDefaultStrategy', # 'IncBBRSStrategy', # 'IncStrategyManager' ] __version__ = '1.0.0'