import pandas as pd import numpy as np from cycles.Analysis.boillinger_band import BollingerBands class Strategy: def __init__(self, config = None, logging = None): if config is None: raise ValueError("Config must be provided.") self.config = config self.logging = logging def run(self, data, strategy_name): if strategy_name == "MarketRegimeStrategy": return self.MarketRegimeStrategy(data) else: if self.logging is not None: self.logging.warning(f"Strategy {strategy_name} not found. Using no_strategy instead.") return self.no_strategy(data) def no_strategy(self, data): """No strategy: returns False for both buy and sell conditions""" buy_condition = pd.Series([False] * len(data), index=data.index) sell_condition = pd.Series([False] * len(data), index=data.index) return buy_condition, sell_condition def rsi_bollinger_confirmation(self, rsi, window=14, std_mult=1.5): """Calculate RSI Bollinger Bands for confirmation Args: rsi (Series): RSI values window (int): Rolling window for SMA std_mult (float): Standard deviation multiplier Returns: tuple: (oversold condition, overbought condition) """ valid_rsi = ~rsi.isna() if not valid_rsi.any(): # Return empty Series if no valid RSI data return pd.Series(False, index=rsi.index), pd.Series(False, index=rsi.index) rsi_sma = rsi.rolling(window).mean() rsi_std = rsi.rolling(window).std() upper_rsi_band = rsi_sma + std_mult * rsi_std lower_rsi_band = rsi_sma - std_mult * rsi_std return (rsi < lower_rsi_band), (rsi > upper_rsi_band) def MarketRegimeStrategy(self, data): """Optimized Bollinger Bands + RSI Strategy for Crypto Trading (Including Sideways Markets) with adaptive Bollinger Bands This advanced strategy combines volatility analysis, momentum confirmation, and regime detection to adapt to Bitcoin's unique market conditions. Entry Conditions: - Trending Market (Breakout Mode): Buy: Price < Lower Band ∧ RSI < 50 ∧ Volume Spike (≥1.5× 20D Avg) Sell: Price > Upper Band ∧ RSI > 50 ∧ Volume Spike - Sideways Market (Mean Reversion): Buy: Price ≤ Lower Band ∧ RSI ≤ 40 Sell: Price ≥ Upper Band ∧ RSI ≥ 60 Enhanced with RSI Bollinger Squeeze for signal confirmation when enabled. """ # Initialize conditions as all False buy_condition = pd.Series(False, index=data.index) sell_condition = pd.Series(False, index=data.index) # Create masks for different market regimes sideways_mask = data['MarketRegime'] > 0 trending_mask = data['MarketRegime'] <= 0 valid_data_mask = ~data['MarketRegime'].isna() # Handle potential NaN values # Calculate volume spike (≥1.5× 20D Avg) if 'volume' in data.columns: volume_20d_avg = data['volume'].rolling(window=20).mean() volume_spike = data['volume'] >= 1.5 * volume_20d_avg # Additional volume contraction filter for sideways markets volume_30d_avg = data['volume'].rolling(window=30).mean() volume_contraction = data['volume'] < 0.7 * volume_30d_avg else: # If volume data is not available, assume no volume spike volume_spike = pd.Series(False, index=data.index) volume_contraction = pd.Series(False, index=data.index) if self.logging is not None: self.logging.warning("Volume data not available. Volume conditions will not be triggered.") # Calculate RSI Bollinger Squeeze confirmation if 'RSI' in data.columns: oversold_rsi, overbought_rsi = self.rsi_bollinger_confirmation(data['RSI']) else: oversold_rsi = pd.Series(False, index=data.index) overbought_rsi = pd.Series(False, index=data.index) if self.logging is not None: self.logging.warning("RSI data not available. RSI Bollinger Squeeze will not be triggered.") # Calculate conditions for sideways market (Mean Reversion) if sideways_mask.any(): sideways_buy = (data['close'] <= data['LowerBand']) & (data['RSI'] <= 40) sideways_sell = (data['close'] >= data['UpperBand']) & (data['RSI'] >= 60) # Add enhanced confirmation for sideways markets if self.config.get("SqueezeStrategy", False): sideways_buy = sideways_buy & oversold_rsi & volume_contraction sideways_sell = sideways_sell & overbought_rsi & volume_contraction # Apply only where market is sideways and data is valid buy_condition = buy_condition | (sideways_buy & sideways_mask & valid_data_mask) sell_condition = sell_condition | (sideways_sell & sideways_mask & valid_data_mask) # Calculate conditions for trending market (Breakout Mode) if trending_mask.any(): trending_buy = (data['close'] < data['LowerBand']) & (data['RSI'] < 50) & volume_spike trending_sell = (data['close'] > data['UpperBand']) & (data['RSI'] > 50) & volume_spike # Add enhanced confirmation for trending markets if self.config.get("SqueezeStrategy", False): trending_buy = trending_buy & oversold_rsi trending_sell = trending_sell & overbought_rsi # Apply only where market is trending and data is valid buy_condition = buy_condition | (trending_buy & trending_mask & valid_data_mask) sell_condition = sell_condition | (trending_sell & trending_mask & valid_data_mask) return buy_condition, sell_condition