# Analysis Module This document provides an overview of the `Analysis` module and its components, which are typically used for technical analysis of financial market data. ## Modules The `Analysis` module includes classes for calculating common technical indicators: - **Relative Strength Index (RSI)**: Implemented in `cycles/Analysis/rsi.py`. - **Bollinger Bands**: Implemented in `cycles/Analysis/boillinger_band.py`. - **Trading Strategies**: Implemented in `cycles/Analysis/strategies.py`. ## Class: `RSI` Found in `cycles/Analysis/rsi.py`. Calculates the Relative Strength Index. ### Mathematical Model 1. **Average Gain (AvgU)** and **Average Loss (AvgD)** over 14 periods: $$ \text{AvgU} = \frac{\sum \text{Upward Price Changes}}{14}, \quad \text{AvgD} = \frac{\sum \text{Downward Price Changes}}{14} $$ 2. **Relative Strength (RS)**: $$ RS = \frac{\text{AvgU}}{\text{AvgD}} $$ 3. **RSI**: $$ RSI = 100 - \frac{100}{1 + RS} $$ ### `__init__(self, period: int = 14)` - **Description**: Initializes the RSI calculator. - **Parameters**: - `period` (int, optional): The period for RSI calculation. Defaults to 14. Must be a positive integer. ### `calculate(self, data_df: pd.DataFrame, price_column: str = 'close') -> pd.DataFrame` - **Description**: Calculates the RSI and adds it as an 'RSI' column to the input DataFrame. Handles cases where data length is less than the period by returning the original DataFrame with a warning. - **Parameters**: - `data_df` (pd.DataFrame): DataFrame with historical price data. Must contain the `price_column`. - `price_column` (str, optional): The name of the column containing price data. Defaults to 'close'. - **Returns**: `pd.DataFrame` - The input DataFrame with an added 'RSI' column (containing `np.nan` for initial periods where RSI cannot be calculated). Returns a copy of the original DataFrame if the period is larger than the number of data points. ## Class: `BollingerBands` Found in `cycles/Analysis/boillinger_band.py`. ## **Bollinger Bands** ### Mathematical Model 1. **Middle Band**: 20-day Simple Moving Average (SMA) $$ \text{Middle Band} = \frac{1}{20} \sum_{i=1}^{20} \text{Close}_{t-i} $$ 2. **Upper Band**: Middle Band + 2 × 20-day Standard Deviation (σ) $$ \text{Upper Band} = \text{Middle Band} + 2 \times \sigma_{20} $$ 3. **Lower Band**: Middle Band − 2 × 20-day Standard Deviation (σ) $$ \text{Lower Band} = \text{Middle Band} - 2 \times \sigma_{20} $$ ### `__init__(self, period: int = 20, std_dev_multiplier: float = 2.0)` - **Description**: Initializes the BollingerBands calculator. - **Parameters**: - `period` (int, optional): The period for the moving average and standard deviation. Defaults to 20. Must be a positive integer. - `std_dev_multiplier` (float, optional): The number of standard deviations for the upper and lower bands. Defaults to 2.0. Must be positive. ### `calculate(self, data_df: pd.DataFrame, price_column: str = 'close') -> pd.DataFrame` - **Description**: Calculates Bollinger Bands and adds 'SMA' (Simple Moving Average), 'UpperBand', and 'LowerBand' columns to the DataFrame. - **Parameters**: - `data_df` (pd.DataFrame): DataFrame with price data. Must include the `price_column`. - `price_column` (str, optional): The name of the column containing the price data (e.g., 'close'). Defaults to 'close'. - **Returns**: `pd.DataFrame` - The original DataFrame with added columns: 'SMA', 'UpperBand', 'LowerBand'. ## Class: `Strategy` Found in `cycles/Analysis/strategies.py`. Implements various trading strategies using technical indicators. ### `__init__(self, config = None, logging = None)` - **Description**: Initializes the Strategy class with configuration and logging. - **Parameters**: - `config` (dict): Configuration dictionary with strategy parameters. Must be provided. - `logging` (logging object, optional): Logger for output messages. Defaults to None. ### `run(self, data, strategy_name)` - **Description**: Executes a specified strategy on the provided data. - **Parameters**: - `data` (pd.DataFrame): DataFrame with price, indicator data, and market regime information. - `strategy_name` (str): Name of the strategy to run. Currently supports "MarketRegimeStrategy". - **Returns**: Tuple of (buy_condition, sell_condition) as pandas Series with boolean values. ### `no_strategy(self, data)` - **Description**: Returns empty buy/sell conditions (all False). - **Parameters**: - `data` (pd.DataFrame): Input data DataFrame. - **Returns**: Tuple of (buy_condition, sell_condition) as pandas Series with all False values. ### `rsi_bollinger_confirmation(self, rsi, window=14, std_mult=1.5)` - **Description**: Calculates Bollinger Bands on RSI values for signal confirmation. - **Parameters**: - `rsi` (pd.Series): Series containing RSI values. - `window` (int, optional): The period for the moving average. Defaults to 14. - `std_mult` (float, optional): Standard deviation multiplier for bands. Defaults to 1.5. - **Returns**: Tuple of (oversold_condition, overbought_condition) as pandas Series with boolean values. ### `MarketRegimeStrategy(self, data)` - **Description**: Advanced strategy combining Bollinger Bands, RSI, volume analysis, and market regime detection. - **Parameters**: - `data` (pd.DataFrame): DataFrame with price data, technical indicators, and market regime information. - **Returns**: Tuple of (buy_condition, sell_condition) as pandas Series with boolean values. #### Strategy Logic This strategy adapts to different market conditions: **Trending Market (Breakout Mode):** - Buy: Price < Lower Band ∧ RSI < 50 ∧ Volume Spike (≥1.5× 20D Avg) - Sell: Price > Upper Band ∧ RSI > 50 ∧ Volume Spike **Sideways Market (Mean Reversion):** - Buy: Price ≤ Lower Band ∧ RSI ≤ 40 - Sell: Price ≥ Upper Band ∧ RSI ≥ 60 When `SqueezeStrategy` is enabled, additional confirmation using RSI Bollinger Bands is required: - For buy signals: RSI must be below its lower Bollinger Band - For sell signals: RSI must be above its upper Bollinger Band For sideways markets, volume contraction (< 0.7× 30D Avg) is also checked to avoid false signals.