# Use the base image with CUDA and PyTorch FROM kom4cr0/cuda11.7-pytorch1.13-mamba1.1.1:1.1.1 # Install NVIDIA Container Toolkit (necessary for GPU support) RUN apt-get update && apt-get install -y \ nvidia-container-runtime \ python3 \ python3-pip \ && rm -rf /var/lib/apt/lists/* # Install necessary dependencies and configure NVIDIA repository RUN apt-get update && apt-get install -y \ curl \ gnupg \ lsb-release \ sudo \ && curl -fsSL https://nvidia.github.io/libnvidia-container/gpgkey | gpg --dearmor -o /usr/share/keyrings/nvidia-container-toolkit-keyring.gpg \ && curl -s -L https://nvidia.github.io/libnvidia-container/stable/deb/nvidia-container-toolkit.list | \ sed 's#deb https://#deb [signed-by=/usr/share/keyrings/nvidia-container-toolkit-keyring.gpg] https://#g' | \ tee /etc/apt/sources.list.d/nvidia-container-toolkit.list \ && sed -i -e '/experimental/ s/^#//g' /etc/apt/sources.list.d/nvidia-container-toolkit.list \ && apt-get update # Install NVIDIA Container Toolkit RUN apt-get install -y nvidia-container-toolkit # Set the environment variables for CUDA ENV PATH=/usr/local/cuda-11.7/bin:$PATH ENV LD_LIBRARY_PATH=/usr/local/cuda-11.7/lib64:$LD_LIBRARY_PATH # Set the runtime for GPU (requires NVIDIA runtime to be installed on the host machine) ENV NVIDIA_VISIBLE_DEVICES=all ENV NVIDIA_DRIVER_CAPABILITIES=compute,utility # Set working directory to /projects WORKDIR /project # Install necessary Python dependencies # Uncomment and modify the next lines as per your project requirements COPY requirements.txt requirements.txt RUN pip3 install -r requirements.txt # Run your Python script CMD ["python3", "main.py"]