import logging import seaborn as sns import matplotlib.pyplot as plt import pandas as pd from cycles.utils.storage import Storage from cycles.utils.data_utils import aggregate_to_daily from cycles.Analysis.strategies import Strategy logging.basicConfig( level=logging.INFO, format="%(asctime)s [%(levelname)s] %(message)s", handlers=[ logging.FileHandler("backtest.log"), logging.StreamHandler() ] ) config_minute = { "start_date": "2023-01-01", "stop_date": "2024-01-01", "data_file": "btcusd_1-min_data.csv" } config_day = { "start_date": "2023-01-01", "stop_date": "2024-01-01", "data_file": "btcusd_1-day_data.csv" } config_strategy = { "bb_width": 0.05, "bb_period": 20, "rsi_period": 14, "trending": { "rsi_threshold": [30, 70], "bb_std_dev_multiplier": 2.5, }, "sideways": { "rsi_threshold": [40, 60], "bb_std_dev_multiplier": 1.8, }, "strategy_name": "MarketRegimeStrategy", "SqueezeStrategy": True } IS_DAY = False if __name__ == "__main__": storage = Storage(logging=logging) if IS_DAY: config = config_day else: config = config_minute data = storage.load_data(config["data_file"], config["start_date"], config["stop_date"]) strategy = Strategy(config=config_strategy, logging=logging) processed_data = strategy.run(data.copy(), config_strategy["strategy_name"]) buy_condition = processed_data.get('BuySignal', pd.Series(False, index=processed_data.index)).astype(bool) sell_condition = processed_data.get('SellSignal', pd.Series(False, index=processed_data.index)).astype(bool) buy_signals = processed_data[buy_condition] sell_signals = processed_data[sell_condition] # plot the data with seaborn library if processed_data is not None and not processed_data.empty: # Create a figure with two subplots, sharing the x-axis fig, (ax1, ax2, ax3) = plt.subplots(3, 1, figsize=(16, 8), sharex=True) # Plot 1: Close Price and Bollinger Bands sns.lineplot(x=processed_data.index, y='close', data=processed_data, label='Close Price', ax=ax1) sns.lineplot(x=processed_data.index, y='UpperBand', data=processed_data, label='Upper Band (BB)', ax=ax1) sns.lineplot(x=processed_data.index, y='LowerBand', data=processed_data, label='Lower Band (BB)', ax=ax1) # Plot Buy/Sell signals on Price chart if not buy_signals.empty: ax1.scatter(buy_signals.index, buy_signals['close'], color='green', marker='o', s=20, label='Buy Signal', zorder=5) if not sell_signals.empty: ax1.scatter(sell_signals.index, sell_signals['close'], color='red', marker='o', s=20, label='Sell Signal', zorder=5) ax1.set_title('Price and Bollinger Bands with Signals') ax1.set_ylabel('Price') ax1.legend() ax1.grid(True) # Plot 2: RSI if 'RSI' in processed_data.columns: sns.lineplot(x=processed_data.index, y='RSI', data=processed_data, label='RSI (' + str(config_strategy["rsi_period"]) + ')', ax=ax2, color='purple') ax2.axhline(config_strategy["trending"]["rsi_threshold"][1], color='red', linestyle='--', linewidth=0.8, label='Overbought (' + str(config_strategy["trending"]["rsi_threshold"][1]) + ')') ax2.axhline(config_strategy['trending']['rsi_threshold'][0], color='green', linestyle='--', linewidth=0.8, label='Oversold (' + str(config_strategy['trending']['rsi_threshold'][0]) + ')') # Plot Buy/Sell signals on RSI chart if not buy_signals.empty: ax2.scatter(buy_signals.index, buy_signals['RSI'], color='green', marker='o', s=20, label='Buy Signal (RSI)', zorder=5) if not sell_signals.empty: ax2.scatter(sell_signals.index, sell_signals['RSI'], color='red', marker='o', s=20, label='Sell Signal (RSI)', zorder=5) ax2.set_title('Relative Strength Index (RSI) with Signals') ax2.set_ylabel('RSI Value') ax2.set_ylim(0, 100) # RSI is typically bounded between 0 and 100 ax2.legend() ax2.grid(True) else: logging.info("RSI data not available for plotting.") # Plot 3: BB Width sns.lineplot(x=processed_data.index, y='BBWidth', data=processed_data, label='BB Width', ax=ax3) sns.lineplot(x=processed_data.index, y='MarketRegime', data=processed_data, label='Market Regime (Sideways: 1, Trending: 0)', ax=ax3) ax3.set_title('Bollinger Bands Width') ax3.set_ylabel('BB Width') ax3.legend() ax3.grid(True) plt.xlabel('Date') # Common X-axis label fig.tight_layout() # Adjust layout to prevent overlapping titles/labels plt.show() else: logging.info("No data to plot.")