Compare commits
2 Commits
2fd73085b8
...
5f03524d6a
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
5f03524d6a | ||
|
|
74c8048ed5 |
@ -27,6 +27,9 @@ class Backtest:
|
||||
trends_arr = np.stack(trends, axis=1)
|
||||
meta_trend = np.where((trends_arr[:,0] == trends_arr[:,1]) & (trends_arr[:,1] == trends_arr[:,2]),
|
||||
trends_arr[:,0], 0)
|
||||
# Shift meta_trend by one to avoid lookahead bias
|
||||
meta_trend_signal = np.roll(meta_trend, 1)
|
||||
meta_trend_signal[0] = 0 # or np.nan, but 0 means 'no signal' for first bar
|
||||
|
||||
position = 0 # 0 = no position, 1 = long
|
||||
entry_price = 0
|
||||
@ -45,8 +48,8 @@ class Backtest:
|
||||
price_open = _df['open'].iloc[i]
|
||||
price_close = _df['close'].iloc[i]
|
||||
date = _df['timestamp'].iloc[i]
|
||||
prev_mt = meta_trend[i-1]
|
||||
curr_mt = meta_trend[i]
|
||||
prev_mt = meta_trend_signal[i-1]
|
||||
curr_mt = meta_trend_signal[i]
|
||||
|
||||
# Check stop loss if in position
|
||||
if position == 1:
|
||||
|
||||
@ -1,70 +1,30 @@
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import logging
|
||||
from scipy.signal import find_peaks
|
||||
from matplotlib.patches import Rectangle
|
||||
from scipy import stats
|
||||
import concurrent.futures
|
||||
from functools import partial
|
||||
from functools import lru_cache
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
# Color configuration
|
||||
# Plot colors
|
||||
DARK_BG_COLOR = '#181C27'
|
||||
LEGEND_BG_COLOR = '#333333'
|
||||
TITLE_COLOR = 'white'
|
||||
AXIS_LABEL_COLOR = 'white'
|
||||
|
||||
# Candlestick colors
|
||||
CANDLE_UP_COLOR = '#089981' # Green
|
||||
CANDLE_DOWN_COLOR = '#F23645' # Red
|
||||
|
||||
# Marker colors
|
||||
MIN_COLOR = 'red'
|
||||
MAX_COLOR = 'green'
|
||||
|
||||
# Line style colors
|
||||
MIN_LINE_STYLE = 'g--' # Green dashed
|
||||
MAX_LINE_STYLE = 'r--' # Red dashed
|
||||
SMA7_LINE_STYLE = 'y-' # Yellow solid
|
||||
SMA15_LINE_STYLE = 'm-' # Magenta solid
|
||||
|
||||
# SuperTrend colors
|
||||
ST_COLOR_UP = 'g-'
|
||||
ST_COLOR_DOWN = 'r-'
|
||||
|
||||
# Cache the calculation results by function parameters
|
||||
@lru_cache(maxsize=32)
|
||||
def cached_supertrend_calculation(period, multiplier, data_tuple):
|
||||
# Convert tuple back to numpy arrays
|
||||
high = np.array(data_tuple[0])
|
||||
low = np.array(data_tuple[1])
|
||||
close = np.array(data_tuple[2])
|
||||
|
||||
# Calculate TR and ATR using vectorized operations
|
||||
tr = np.zeros_like(close)
|
||||
tr[0] = high[0] - low[0]
|
||||
hc_range = np.abs(high[1:] - close[:-1])
|
||||
lc_range = np.abs(low[1:] - close[:-1])
|
||||
hl_range = high[1:] - low[1:]
|
||||
tr[1:] = np.maximum.reduce([hl_range, hc_range, lc_range])
|
||||
|
||||
# Use numpy's exponential moving average
|
||||
atr = np.zeros_like(tr)
|
||||
atr[0] = tr[0]
|
||||
multiplier_ema = 2.0 / (period + 1)
|
||||
for i in range(1, len(tr)):
|
||||
atr[i] = (tr[i] * multiplier_ema) + (atr[i-1] * (1 - multiplier_ema))
|
||||
|
||||
# Calculate bands
|
||||
upper_band = np.zeros_like(close)
|
||||
lower_band = np.zeros_like(close)
|
||||
for i in range(len(close)):
|
||||
hl_avg = (high[i] + low[i]) / 2
|
||||
upper_band[i] = hl_avg + (multiplier * atr[i])
|
||||
lower_band[i] = hl_avg - (multiplier * atr[i])
|
||||
|
||||
final_upper = np.zeros_like(close)
|
||||
final_lower = np.zeros_like(close)
|
||||
supertrend = np.zeros_like(close)
|
||||
@ -106,76 +66,18 @@ def cached_supertrend_calculation(period, multiplier, data_tuple):
|
||||
}
|
||||
|
||||
def calculate_supertrend_external(data, period, multiplier):
|
||||
# Convert DataFrame columns to hashable tuples
|
||||
high_tuple = tuple(data['high'])
|
||||
low_tuple = tuple(data['low'])
|
||||
close_tuple = tuple(data['close'])
|
||||
|
||||
# Call the cached function
|
||||
return cached_supertrend_calculation(period, multiplier, (high_tuple, low_tuple, close_tuple))
|
||||
|
||||
|
||||
class Supertrends:
|
||||
def __init__(self, data, verbose=False, display=False):
|
||||
"""
|
||||
Initialize the TrendDetectorSimple class.
|
||||
|
||||
Parameters:
|
||||
- data: pandas DataFrame containing price data
|
||||
- verbose: boolean, whether to display detailed logging information
|
||||
- display: boolean, whether to enable display/plotting features
|
||||
"""
|
||||
|
||||
self.data = data
|
||||
self.verbose = verbose
|
||||
self.display = display
|
||||
|
||||
# Only define display-related variables if display is True
|
||||
if self.display:
|
||||
# Plot style configuration
|
||||
self.plot_style = 'dark_background'
|
||||
self.bg_color = DARK_BG_COLOR
|
||||
self.plot_size = (12, 8)
|
||||
|
||||
# Candlestick configuration
|
||||
self.candle_width = 0.6
|
||||
self.candle_up_color = CANDLE_UP_COLOR
|
||||
self.candle_down_color = CANDLE_DOWN_COLOR
|
||||
self.candle_alpha = 0.8
|
||||
self.wick_width = 1
|
||||
|
||||
# Marker configuration
|
||||
self.min_marker = '^'
|
||||
self.min_color = MIN_COLOR
|
||||
self.min_size = 100
|
||||
self.max_marker = 'v'
|
||||
self.max_color = MAX_COLOR
|
||||
self.max_size = 100
|
||||
self.marker_zorder = 100
|
||||
|
||||
# Line configuration
|
||||
self.line_width = 1
|
||||
self.min_line_style = MIN_LINE_STYLE
|
||||
self.max_line_style = MAX_LINE_STYLE
|
||||
self.sma7_line_style = SMA7_LINE_STYLE
|
||||
self.sma15_line_style = SMA15_LINE_STYLE
|
||||
|
||||
# Text configuration
|
||||
self.title_size = 14
|
||||
self.title_color = TITLE_COLOR
|
||||
self.axis_label_size = 12
|
||||
self.axis_label_color = AXIS_LABEL_COLOR
|
||||
|
||||
# Legend configuration
|
||||
self.legend_loc = 'best'
|
||||
self.legend_bg_color = LEGEND_BG_COLOR
|
||||
|
||||
# Configure logging
|
||||
logging.basicConfig(level=logging.INFO if verbose else logging.WARNING,
|
||||
format='%(asctime)s - %(levelname)s - %(message)s')
|
||||
self.logger = logging.getLogger('TrendDetectorSimple')
|
||||
|
||||
# Convert data to pandas DataFrame if it's not already
|
||||
if not isinstance(self.data, pd.DataFrame):
|
||||
if isinstance(self.data, list):
|
||||
self.data = pd.DataFrame({'close': self.data})
|
||||
@ -183,154 +85,101 @@ class Supertrends:
|
||||
raise ValueError("Data must be a pandas DataFrame or a list")
|
||||
|
||||
def calculate_tr(self):
|
||||
df = self.data.copy()
|
||||
high = df['high'].values
|
||||
low = df['low'].values
|
||||
close = df['close'].values
|
||||
tr = np.zeros_like(close)
|
||||
tr[0] = high[0] - low[0]
|
||||
for i in range(1, len(close)):
|
||||
hl_range = high[i] - low[i]
|
||||
hc_range = abs(high[i] - close[i-1])
|
||||
lc_range = abs(low[i] - close[i-1])
|
||||
tr[i] = max(hl_range, hc_range, lc_range)
|
||||
return tr
|
||||
|
||||
def calculate_atr(self, period=14):
|
||||
tr = self.calculate_tr()
|
||||
atr = np.zeros_like(tr)
|
||||
atr[0] = tr[0]
|
||||
multiplier = 2.0 / (period + 1)
|
||||
for i in range(1, len(tr)):
|
||||
atr[i] = (tr[i] * multiplier) + (atr[i-1] * (1 - multiplier))
|
||||
return atr
|
||||
|
||||
def calculate_supertrend(self, period=10, multiplier=3.0):
|
||||
"""
|
||||
Calculate True Range (TR) for the price data.
|
||||
|
||||
True Range is the greatest of:
|
||||
1. Current high - current low
|
||||
2. |Current high - previous close|
|
||||
3. |Current low - previous close|
|
||||
|
||||
Calculate SuperTrend indicator for the price data.
|
||||
SuperTrend is a trend-following indicator that uses ATR to determine the trend direction.
|
||||
Parameters:
|
||||
- period: int, the period for the ATR calculation (default: 10)
|
||||
- multiplier: float, the multiplier for the ATR (default: 3.0)
|
||||
Returns:
|
||||
- Numpy array of TR values
|
||||
- Dictionary containing SuperTrend values, trend direction, and upper/lower bands
|
||||
"""
|
||||
df = self.data.copy()
|
||||
high = df['high'].values
|
||||
low = df['low'].values
|
||||
close = df['close'].values
|
||||
|
||||
tr = np.zeros_like(close)
|
||||
tr[0] = high[0] - low[0] # First TR is just the first day's range
|
||||
|
||||
atr = self.calculate_atr(period)
|
||||
upper_band = np.zeros_like(close)
|
||||
lower_band = np.zeros_like(close)
|
||||
for i in range(len(close)):
|
||||
hl_avg = (high[i] + low[i]) / 2
|
||||
upper_band[i] = hl_avg + (multiplier * atr[i])
|
||||
lower_band[i] = hl_avg - (multiplier * atr[i])
|
||||
final_upper = np.zeros_like(close)
|
||||
final_lower = np.zeros_like(close)
|
||||
supertrend = np.zeros_like(close)
|
||||
trend = np.zeros_like(close)
|
||||
final_upper[0] = upper_band[0]
|
||||
final_lower[0] = lower_band[0]
|
||||
if close[0] <= upper_band[0]:
|
||||
supertrend[0] = upper_band[0]
|
||||
trend[0] = -1
|
||||
else:
|
||||
supertrend[0] = lower_band[0]
|
||||
trend[0] = 1
|
||||
for i in range(1, len(close)):
|
||||
# Current high - current low
|
||||
hl_range = high[i] - low[i]
|
||||
# |Current high - previous close|
|
||||
hc_range = abs(high[i] - close[i-1])
|
||||
# |Current low - previous close|
|
||||
lc_range = abs(low[i] - close[i-1])
|
||||
|
||||
# TR is the maximum of these three values
|
||||
tr[i] = max(hl_range, hc_range, lc_range)
|
||||
|
||||
return tr
|
||||
|
||||
def calculate_atr(self, period=14):
|
||||
"""
|
||||
Calculate Average True Range (ATR) for the price data.
|
||||
|
||||
ATR is the exponential moving average of the True Range over a specified period.
|
||||
|
||||
Parameters:
|
||||
- period: int, the period for the ATR calculation (default: 14)
|
||||
|
||||
Returns:
|
||||
- Numpy array of ATR values
|
||||
"""
|
||||
|
||||
tr = self.calculate_tr()
|
||||
atr = np.zeros_like(tr)
|
||||
|
||||
# First ATR value is just the first TR
|
||||
atr[0] = tr[0]
|
||||
|
||||
# Calculate exponential moving average (EMA) of TR
|
||||
multiplier = 2.0 / (period + 1)
|
||||
|
||||
for i in range(1, len(tr)):
|
||||
atr[i] = (tr[i] * multiplier) + (atr[i-1] * (1 - multiplier))
|
||||
|
||||
return atr
|
||||
|
||||
def detect_trends(self):
|
||||
"""
|
||||
Detect trends by identifying local minima and maxima in the price data
|
||||
using scipy.signal.find_peaks.
|
||||
|
||||
Parameters:
|
||||
- prominence: float, required prominence of peaks (relative to the price range)
|
||||
- width: int, required width of peaks in data points
|
||||
|
||||
Returns:
|
||||
- DataFrame with columns for timestamps, prices, and trend indicators
|
||||
- Dictionary containing analysis results including linear regression, SMAs, and SuperTrend indicators
|
||||
"""
|
||||
df = self.data
|
||||
# close_prices = df['close'].values
|
||||
|
||||
# max_peaks, _ = find_peaks(close_prices)
|
||||
# min_peaks, _ = find_peaks(-close_prices)
|
||||
|
||||
# df['is_min'] = False
|
||||
# df['is_max'] = False
|
||||
|
||||
# for peak in max_peaks:
|
||||
# df.at[peak, 'is_max'] = True
|
||||
# for peak in min_peaks:
|
||||
# df.at[peak, 'is_min'] = True
|
||||
|
||||
# result = df[['timestamp', 'close', 'is_min', 'is_max']].copy()
|
||||
|
||||
# Perform linear regression on min_peaks and max_peaks
|
||||
# min_prices = df['close'].iloc[min_peaks].values
|
||||
# max_prices = df['close'].iloc[max_peaks].values
|
||||
|
||||
# Linear regression for min peaks if we have at least 2 points
|
||||
# min_slope, min_intercept, min_r_value, _, _ = stats.linregress(min_peaks, min_prices)
|
||||
# Linear regression for max peaks if we have at least 2 points
|
||||
# max_slope, max_intercept, max_r_value, _, _ = stats.linregress(max_peaks, max_prices)
|
||||
if (upper_band[i] < final_upper[i-1]) or (close[i-1] > final_upper[i-1]):
|
||||
final_upper[i] = upper_band[i]
|
||||
else:
|
||||
final_upper[i] = final_upper[i-1]
|
||||
if (lower_band[i] > final_lower[i-1]) or (close[i-1] < final_lower[i-1]):
|
||||
final_lower[i] = lower_band[i]
|
||||
else:
|
||||
final_lower[i] = final_lower[i-1]
|
||||
if supertrend[i-1] == final_upper[i-1] and close[i] <= final_upper[i]:
|
||||
supertrend[i] = final_upper[i]
|
||||
trend[i] = -1
|
||||
elif supertrend[i-1] == final_upper[i-1] and close[i] > final_upper[i]:
|
||||
supertrend[i] = final_lower[i]
|
||||
trend[i] = 1
|
||||
elif supertrend[i-1] == final_lower[i-1] and close[i] >= final_lower[i]:
|
||||
supertrend[i] = final_lower[i]
|
||||
trend[i] = 1
|
||||
elif supertrend[i-1] == final_lower[i-1] and close[i] < final_lower[i]:
|
||||
supertrend[i] = final_upper[i]
|
||||
trend[i] = -1
|
||||
supertrend_results = {
|
||||
'supertrend': supertrend,
|
||||
'trend': trend,
|
||||
'upper_band': final_upper,
|
||||
'lower_band': final_lower
|
||||
}
|
||||
return supertrend_results
|
||||
|
||||
# Calculate Simple Moving Averages (SMA) for 7 and 15 periods
|
||||
# sma_7 = pd.Series(close_prices).rolling(window=7, min_periods=1).mean().values
|
||||
# sma_15 = pd.Series(close_prices).rolling(window=15, min_periods=1).mean().values
|
||||
|
||||
analysis_results = {}
|
||||
# analysis_results['linear_regression'] = {
|
||||
# 'min': {
|
||||
# 'slope': min_slope,
|
||||
# 'intercept': min_intercept,
|
||||
# 'r_squared': min_r_value ** 2
|
||||
# },
|
||||
# 'max': {
|
||||
# 'slope': max_slope,
|
||||
# 'intercept': max_intercept,
|
||||
# 'r_squared': max_r_value ** 2
|
||||
# }
|
||||
# }
|
||||
# analysis_results['sma'] = {
|
||||
# '7': sma_7,
|
||||
# '15': sma_15
|
||||
# }
|
||||
|
||||
# Calculate SuperTrend indicators
|
||||
supertrend_results_list = self._calculate_supertrend_indicators()
|
||||
analysis_results['supertrend'] = supertrend_results_list
|
||||
|
||||
return analysis_results
|
||||
|
||||
def calculate_supertrend_indicators(self):
|
||||
"""
|
||||
Calculate SuperTrend indicators with different parameter sets in parallel.
|
||||
Returns:
|
||||
- list, the SuperTrend results
|
||||
"""
|
||||
supertrend_params = [
|
||||
{"period": 12, "multiplier": 3.0, "color_up": ST_COLOR_UP, "color_down": ST_COLOR_DOWN},
|
||||
{"period": 10, "multiplier": 1.0, "color_up": ST_COLOR_UP, "color_down": ST_COLOR_DOWN},
|
||||
{"period": 11, "multiplier": 2.0, "color_up": ST_COLOR_UP, "color_down": ST_COLOR_DOWN}
|
||||
{"period": 12, "multiplier": 3.0},
|
||||
{"period": 10, "multiplier": 1.0},
|
||||
{"period": 11, "multiplier": 2.0}
|
||||
]
|
||||
data = self.data.copy()
|
||||
|
||||
# For just 3 calculations, direct calculation might be faster than process pool
|
||||
results = []
|
||||
for p in supertrend_params:
|
||||
result = calculate_supertrend_external(data, p["period"], p["multiplier"])
|
||||
results.append(result)
|
||||
|
||||
supertrend_results_list = []
|
||||
for params, result in zip(supertrend_params, results):
|
||||
supertrend_results_list.append({
|
||||
result = self.calculate_supertrend(period=p["period"], multiplier=p["multiplier"])
|
||||
results.append({
|
||||
"results": result,
|
||||
"params": params
|
||||
"params": p
|
||||
})
|
||||
return supertrend_results_list
|
||||
return results
|
||||
|
||||
57
main.py
57
main.py
@ -6,7 +6,6 @@ import os
|
||||
import datetime
|
||||
import argparse
|
||||
import json
|
||||
import ast
|
||||
|
||||
from cycles.utils.storage import Storage
|
||||
from cycles.utils.system import SystemUtils
|
||||
@ -48,6 +47,7 @@ def process_timeframe_data(min1_df, df, stop_loss_pcts, rule_name, initial_usd,
|
||||
cumulative_profit = 0
|
||||
max_drawdown = 0
|
||||
peak = 0
|
||||
|
||||
for trade in trades:
|
||||
cumulative_profit += trade['profit_pct']
|
||||
if cumulative_profit > peak:
|
||||
@ -55,10 +55,14 @@ def process_timeframe_data(min1_df, df, stop_loss_pcts, rule_name, initial_usd,
|
||||
drawdown = peak - cumulative_profit
|
||||
if drawdown > max_drawdown:
|
||||
max_drawdown = drawdown
|
||||
|
||||
final_usd = initial_usd
|
||||
|
||||
for trade in trades:
|
||||
final_usd *= (1 + trade['profit_pct'])
|
||||
total_fees_usd = sum(trade.get('fee_usd', 0.0) for trade in trades)
|
||||
|
||||
total_fees_usd = sum(trade['fee_usd'] for trade in trades)
|
||||
|
||||
row = {
|
||||
"timeframe": rule_name,
|
||||
"stop_loss_pct": stop_loss_pct,
|
||||
@ -75,6 +79,7 @@ def process_timeframe_data(min1_df, df, stop_loss_pcts, rule_name, initial_usd,
|
||||
"total_fees_usd": total_fees_usd,
|
||||
}
|
||||
results_rows.append(row)
|
||||
|
||||
for trade in trades:
|
||||
trade_rows.append({
|
||||
"timeframe": rule_name,
|
||||
@ -87,7 +92,9 @@ def process_timeframe_data(min1_df, df, stop_loss_pcts, rule_name, initial_usd,
|
||||
"type": trade.get("type"),
|
||||
"fee_usd": trade.get("fee_usd"),
|
||||
})
|
||||
|
||||
logging.info(f"Timeframe: {rule_name}, Stop Loss: {stop_loss_pct}, Trades: {n_trades}")
|
||||
|
||||
if debug:
|
||||
for trade in trades:
|
||||
if trade['type'] == 'STOP':
|
||||
@ -95,13 +102,16 @@ def process_timeframe_data(min1_df, df, stop_loss_pcts, rule_name, initial_usd,
|
||||
for trade in trades:
|
||||
if trade['profit_pct'] < -0.09: # or whatever is close to -0.10
|
||||
print("Large loss trade:", trade)
|
||||
|
||||
return results_rows, trade_rows
|
||||
|
||||
def process(timeframe_info, debug=False):
|
||||
"""Process a single (timeframe, stop_loss_pct) combination (no monthly split)"""
|
||||
from cycles.utils.storage import Storage # import inside function for safety
|
||||
storage = Storage(logging=None) # or pass a logger if you want, but None is safest for multiprocessing
|
||||
|
||||
rule, data_1min, stop_loss_pct, initial_usd = timeframe_info
|
||||
|
||||
if rule == "1T":
|
||||
if rule == "1T" or rule == "1min":
|
||||
df = data_1min.copy()
|
||||
else:
|
||||
df = data_1min.resample(rule).agg({
|
||||
@ -112,7 +122,33 @@ def process(timeframe_info, debug=False):
|
||||
'volume': 'sum'
|
||||
}).dropna()
|
||||
df = df.reset_index()
|
||||
|
||||
results_rows, all_trade_rows = process_timeframe_data(data_1min, df, [stop_loss_pct], rule, initial_usd, debug=debug)
|
||||
|
||||
if all_trade_rows:
|
||||
trades_fieldnames = ["entry_time", "exit_time", "entry_price", "exit_price", "profit_pct", "type", "fee_usd"]
|
||||
# Prepare header
|
||||
summary_fields = ["timeframe", "stop_loss_pct", "n_trades", "n_stop_loss", "win_rate", "max_drawdown", "avg_trade", "profit_ratio", "final_usd"]
|
||||
summary_row = results_rows[0]
|
||||
header_line = "\t".join(summary_fields) + "\n"
|
||||
value_line = "\t".join(str(summary_row.get(f, "")) for f in summary_fields) + "\n"
|
||||
# File name
|
||||
tf = summary_row["timeframe"]
|
||||
sl = summary_row["stop_loss_pct"]
|
||||
sl_percent = int(round(sl * 100))
|
||||
trades_filename = os.path.join(storage.results_dir, f"trades_{tf}_ST{sl_percent}pct.csv")
|
||||
# Write header
|
||||
with open(trades_filename, "w") as f:
|
||||
f.write(header_line)
|
||||
f.write(value_line)
|
||||
# Now write trades (append mode, skip header)
|
||||
with open(trades_filename, "a", newline="") as f:
|
||||
import csv
|
||||
writer = csv.DictWriter(f, fieldnames=trades_fieldnames)
|
||||
writer.writeheader()
|
||||
for trade in all_trade_rows:
|
||||
writer.writerow({k: trade.get(k, "") for k in trades_fieldnames})
|
||||
|
||||
return results_rows, all_trade_rows
|
||||
|
||||
def aggregate_results(all_rows):
|
||||
@ -126,7 +162,6 @@ def aggregate_results(all_rows):
|
||||
|
||||
summary_rows = []
|
||||
for (rule, stop_loss_pct), rows in grouped.items():
|
||||
n_months = len(rows)
|
||||
total_trades = sum(r['n_trades'] for r in rows)
|
||||
total_stop_loss = sum(r['n_stop_loss'] for r in rows)
|
||||
avg_win_rate = np.mean([r['win_rate'] for r in rows])
|
||||
@ -163,7 +198,7 @@ def get_nearest_price(df, target_date):
|
||||
return nearest_time, price
|
||||
|
||||
if __name__ == "__main__":
|
||||
debug = True
|
||||
debug = False
|
||||
|
||||
parser = argparse.ArgumentParser(description="Run backtest with config file.")
|
||||
parser.add_argument("config", type=str, nargs="?", help="Path to config JSON file.")
|
||||
@ -171,11 +206,11 @@ if __name__ == "__main__":
|
||||
|
||||
# Default values (from config.json)
|
||||
default_config = {
|
||||
"start_date": "2024-05-15",
|
||||
"start_date": "2025-05-01",
|
||||
"stop_date": datetime.datetime.today().strftime('%Y-%m-%d'),
|
||||
"initial_usd": 10000,
|
||||
"timeframes": ["1D"],
|
||||
"stop_loss_pcts": [0.01, 0.02, 0.03],
|
||||
"timeframes": ["1D", "6h", "3h", "1h", "30m", "15m", "5m", "1m"],
|
||||
"stop_loss_pcts": [0.01, 0.02, 0.03, 0.05],
|
||||
}
|
||||
|
||||
if args.config:
|
||||
@ -238,6 +273,7 @@ if __name__ == "__main__":
|
||||
if debug:
|
||||
all_results_rows = []
|
||||
all_trade_rows = []
|
||||
|
||||
for task in tasks:
|
||||
results, trades = process(task, debug)
|
||||
if results or trades:
|
||||
@ -263,7 +299,4 @@ if __name__ == "__main__":
|
||||
]
|
||||
storage.write_backtest_results(backtest_filename, backtest_fieldnames, all_results_rows, metadata_lines)
|
||||
|
||||
trades_fieldnames = ["entry_time", "exit_time", "entry_price", "exit_price", "profit_pct", "type", "fee_usd"]
|
||||
storage.write_trades(all_trade_rows, trades_fieldnames)
|
||||
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user