Refactor cycle detection and trend analysis; enhance trend detection with linear regression and moving averages. Update main script for improved data handling and visualization.
This commit is contained in:
parent
cbc6a7493d
commit
e9bfcd03eb
1
main.py
1
main.py
@ -6,6 +6,7 @@ from cycle_detector import CycleDetector
|
||||
# Load data from CSV file instead of database
|
||||
data = pd.read_csv('data/btcusd_1-day_data.csv')
|
||||
|
||||
|
||||
# Convert datetime column to datetime type
|
||||
start_date = pd.to_datetime('2025-04-01')
|
||||
stop_date = pd.to_datetime('2025-05-06')
|
||||
|
||||
@ -4,6 +4,7 @@ import logging
|
||||
from scipy.signal import find_peaks
|
||||
import matplotlib.dates as mdates
|
||||
from scipy import stats
|
||||
from scipy import stats
|
||||
|
||||
class TrendDetectorSimple:
|
||||
def __init__(self, data, verbose=False):
|
||||
@ -18,6 +19,44 @@ class TrendDetectorSimple:
|
||||
self.data = data
|
||||
self.verbose = verbose
|
||||
|
||||
# Plot style configuration
|
||||
self.plot_style = 'dark_background'
|
||||
self.bg_color = '#181C27'
|
||||
self.plot_size = (12, 8)
|
||||
|
||||
# Candlestick configuration
|
||||
self.candle_width = 0.6
|
||||
self.candle_up_color = '#089981'
|
||||
self.candle_down_color = '#F23645'
|
||||
self.candle_alpha = 0.8
|
||||
self.wick_width = 1
|
||||
|
||||
# Marker configuration
|
||||
self.min_marker = '^'
|
||||
self.min_color = 'red'
|
||||
self.min_size = 100
|
||||
self.max_marker = 'v'
|
||||
self.max_color = 'green'
|
||||
self.max_size = 100
|
||||
self.marker_zorder = 100
|
||||
|
||||
# Line configuration
|
||||
self.line_width = 2
|
||||
self.min_line_style = 'g--' # green dashed
|
||||
self.max_line_style = 'r--' # red dashed
|
||||
self.sma7_line_style = 'y-' # yellow solid
|
||||
self.sma15_line_style = 'm-' # magenta solid
|
||||
|
||||
# Text configuration
|
||||
self.title_size = 14
|
||||
self.title_color = 'white'
|
||||
self.axis_label_size = 12
|
||||
self.axis_label_color = 'white'
|
||||
|
||||
# Legend configuration
|
||||
self.legend_loc = 'best'
|
||||
self.legend_bg_color = '#333333'
|
||||
|
||||
# Configure logging
|
||||
logging.basicConfig(level=logging.INFO if verbose else logging.WARNING,
|
||||
format='%(asctime)s - %(levelname)s - %(message)s')
|
||||
@ -34,6 +73,7 @@ class TrendDetectorSimple:
|
||||
|
||||
self.logger.info(f"Initialized TrendDetectorSimple with {len(self.data)} data points")
|
||||
|
||||
def detect_trends(self):
|
||||
def detect_trends(self):
|
||||
"""
|
||||
Detect trends by identifying local minima and maxima in the price data
|
||||
@ -47,10 +87,13 @@ class TrendDetectorSimple:
|
||||
- DataFrame with columns for timestamps, prices, and trend indicators
|
||||
"""
|
||||
self.logger.info(f"Detecting trends")
|
||||
self.logger.info(f"Detecting trends")
|
||||
|
||||
df = self.data.copy()
|
||||
close_prices = df['close'].values
|
||||
|
||||
max_peaks, _ = find_peaks(close_prices)
|
||||
min_peaks, _ = find_peaks(-close_prices)
|
||||
max_peaks, _ = find_peaks(close_prices)
|
||||
min_peaks, _ = find_peaks(-close_prices)
|
||||
|
||||
@ -79,11 +122,9 @@ class TrendDetectorSimple:
|
||||
# Calculate Simple Moving Averages (SMA) for 7 and 15 periods
|
||||
self.logger.info("Calculating SMA-7 and SMA-15")
|
||||
|
||||
# Calculate SMA values and exclude NaN values
|
||||
sma_7 = df['close'].rolling(window=7).mean().dropna().values
|
||||
sma_15 = df['close'].rolling(window=15).mean().dropna().values
|
||||
sma_7 = pd.Series(close_prices).rolling(window=7, min_periods=1).mean().values
|
||||
sma_15 = pd.Series(close_prices).rolling(window=15, min_periods=1).mean().values
|
||||
|
||||
# Add SMA values to regression_results
|
||||
analysis_results = {}
|
||||
analysis_results['linear_regression'] = {
|
||||
'min': {
|
||||
@ -107,6 +148,7 @@ class TrendDetectorSimple:
|
||||
|
||||
return result, analysis_results
|
||||
|
||||
def plot_trends(self, trend_data, analysis_results):
|
||||
def plot_trends(self, trend_data, analysis_results):
|
||||
"""
|
||||
Plot the price data with detected trends using a candlestick chart.
|
||||
@ -120,18 +162,18 @@ class TrendDetectorSimple:
|
||||
import matplotlib.pyplot as plt
|
||||
from matplotlib.patches import Rectangle
|
||||
|
||||
# Create the figure and axis
|
||||
fig, ax = plt.subplots(figsize=(12, 8))
|
||||
# Create the figure and axis with specified background
|
||||
plt.style.use(self.plot_style)
|
||||
fig, ax = plt.subplots(figsize=self.plot_size)
|
||||
|
||||
# Set the custom background color
|
||||
fig.patch.set_facecolor(self.bg_color)
|
||||
ax.set_facecolor(self.bg_color)
|
||||
|
||||
# Create a copy of the data
|
||||
df = self.data.copy()
|
||||
|
||||
# Plot candlestick chart
|
||||
up_color = 'green'
|
||||
down_color = 'red'
|
||||
|
||||
# Draw candlesticks manually
|
||||
width = 0.6
|
||||
x_values = range(len(df))
|
||||
|
||||
for i in range(len(df)):
|
||||
@ -142,26 +184,29 @@ class TrendDetectorSimple:
|
||||
low_val = df['low'].iloc[i]
|
||||
|
||||
# Determine candle color
|
||||
color = up_color if close_val >= open_val else down_color
|
||||
color = self.candle_up_color if close_val >= open_val else self.candle_down_color
|
||||
|
||||
# Plot candle body
|
||||
body_height = abs(close_val - open_val)
|
||||
bottom = min(open_val, close_val)
|
||||
rect = Rectangle((i - width/2, bottom), width, body_height, color=color, alpha=0.8)
|
||||
rect = Rectangle((i - self.candle_width/2, bottom), self.candle_width, body_height,
|
||||
color=color, alpha=self.candle_alpha)
|
||||
ax.add_patch(rect)
|
||||
|
||||
# Plot candle wicks
|
||||
ax.plot([i, i], [low_val, high_val], color='black', linewidth=1)
|
||||
ax.plot([i, i], [low_val, high_val], color=color, linewidth=self.wick_width)
|
||||
|
||||
min_indices = trend_data.index[trend_data['is_min'] == True].tolist()
|
||||
if min_indices:
|
||||
min_y = [df['close'].iloc[i] for i in min_indices]
|
||||
ax.scatter(min_indices, min_y, color='darkred', s=200, marker='^', label='Local Minima', zorder=100)
|
||||
ax.scatter(min_indices, min_y, color=self.min_color, s=self.min_size,
|
||||
marker=self.min_marker, label='Local Minima', zorder=self.marker_zorder)
|
||||
|
||||
max_indices = trend_data.index[trend_data['is_max'] == True].tolist()
|
||||
if max_indices:
|
||||
max_y = [df['close'].iloc[i] for i in max_indices]
|
||||
ax.scatter(max_indices, max_y, color='darkgreen', s=200, marker='v', label='Local Maxima', zorder=100)
|
||||
ax.scatter(max_indices, max_y, color=self.max_color, s=self.max_size,
|
||||
marker=self.max_marker, label='Local Maxima', zorder=self.marker_zorder)
|
||||
|
||||
if analysis_results:
|
||||
x_vals = np.arange(len(df))
|
||||
@ -169,33 +214,38 @@ class TrendDetectorSimple:
|
||||
min_slope = analysis_results['linear_regression']['min']['slope']
|
||||
min_intercept = analysis_results['linear_regression']['min']['intercept']
|
||||
min_line = min_slope * x_vals + min_intercept
|
||||
ax.plot(x_vals, min_line, 'g--', linewidth=2, label='Minima Regression')
|
||||
ax.plot(x_vals, min_line, self.min_line_style, linewidth=self.line_width,
|
||||
label='Minima Regression')
|
||||
|
||||
# Maxima regression line (resistance)
|
||||
max_slope = analysis_results['linear_regression']['max']['slope']
|
||||
max_intercept = analysis_results['linear_regression']['max']['intercept']
|
||||
max_line = max_slope * x_vals + max_intercept
|
||||
ax.plot(x_vals, max_line, 'r--', linewidth=2, label='Maxima Regression')
|
||||
ax.plot(x_vals, max_line, self.max_line_style, linewidth=self.line_width,
|
||||
label='Maxima Regression')
|
||||
|
||||
# SMA-7 line
|
||||
sma_7 = analysis_results['sma']['7']
|
||||
ax.plot(x_vals, sma_7, 'y-', linewidth=2, label='SMA-7')
|
||||
ax.plot(x_vals, sma_7, self.sma7_line_style, linewidth=self.line_width,
|
||||
label='SMA-7')
|
||||
|
||||
# SMA-15 line
|
||||
# sma_15 = analysis_results['sma']['15']
|
||||
# valid_idx_15 = ~np.isnan(sma_15)
|
||||
# ax.plot(x_vals[valid_idx_15], sma_15[valid_idx_15], 'm-', linewidth=2, label='SMA-15')
|
||||
sma_15 = analysis_results['sma']['15']
|
||||
valid_idx_15 = ~np.isnan(sma_15)
|
||||
ax.plot(x_vals[valid_idx_15], sma_15[valid_idx_15], self.sma15_line_style,
|
||||
linewidth=self.line_width, label='SMA-15')
|
||||
|
||||
# Set title and labels
|
||||
ax.set_title('Price Candlestick Chart with Local Minima and Maxima', fontsize=14)
|
||||
ax.set_xlabel('Date', fontsize=12)
|
||||
ax.set_ylabel('Price', fontsize=12)
|
||||
ax.set_title('Price Candlestick Chart with Local Minima and Maxima',
|
||||
fontsize=self.title_size, color=self.title_color)
|
||||
ax.set_xlabel('Date', fontsize=self.axis_label_size, color=self.axis_label_color)
|
||||
ax.set_ylabel('Price', fontsize=self.axis_label_size, color=self.axis_label_color)
|
||||
|
||||
# Set appropriate x-axis limits
|
||||
ax.set_xlim(-0.5, len(df) - 0.5)
|
||||
|
||||
# Add a legend
|
||||
ax.legend(loc='best')
|
||||
ax.legend(loc=self.legend_loc, facecolor=self.legend_bg_color)
|
||||
|
||||
# Adjust layout
|
||||
plt.tight_layout()
|
||||
|
||||
Loading…
x
Reference in New Issue
Block a user