Merge branch 'main' of ssh://dep.sokaris.link:2222/Simon/Cycles

This commit is contained in:
Simon Moisy 2025-05-23 17:17:20 +08:00
commit 1566044fa8
21 changed files with 3429 additions and 169 deletions

1
.gitignore vendored
View File

@ -1,5 +1,4 @@
# ---> Python
*.json
*.csv
*.png
# Byte-compiled / optimized / DLL files

178
README.md
View File

@ -1 +1,177 @@
# Cycles
# Cycles - Advanced Trading Strategy Backtesting Framework
A sophisticated Python framework for backtesting cryptocurrency trading strategies with multi-timeframe analysis, strategy combination, and advanced signal processing.
## Features
- **Multi-Strategy Architecture**: Combine multiple trading strategies with configurable weights and rules
- **Multi-Timeframe Analysis**: Strategies can operate on different timeframes (1min, 5min, 15min, 1h, etc.)
- **Advanced Strategies**:
- **Default Strategy**: Meta-trend analysis using multiple Supertrend indicators
- **BBRS Strategy**: Bollinger Bands + RSI with market regime detection
- **Flexible Signal Combination**: Weighted consensus, majority voting, any/all combinations
- **Precise Stop-Loss**: 1-minute precision for accurate risk management
- **Comprehensive Backtesting**: Detailed performance metrics and trade analysis
- **Data Visualization**: Interactive charts and performance plots
## Quick Start
### Prerequisites
- Python 3.8+
- [uv](https://github.com/astral-sh/uv) package manager (recommended)
### Installation
```bash
# Clone the repository
git clone <repository-url>
cd Cycles
# Install dependencies with uv
uv sync
# Or install with pip
pip install -r requirements.txt
```
### Running Backtests
Use the `uv run` command to execute backtests with different configurations:
```bash
# Run default strategy on 5-minute timeframe
uv run .\main.py .\configs\config_default_5min.json
# Run default strategy on 15-minute timeframe
uv run .\main.py .\configs\config_default.json
# Run BBRS strategy with market regime detection
uv run .\main.py .\configs\config_bbrs.json
# Run combined strategies
uv run .\main.py .\configs\config_combined.json
```
### Configuration Examples
#### Default Strategy (5-minute timeframe)
```bash
uv run .\main.py .\configs\config_default_5min.json
```
#### BBRS Strategy with Multi-timeframe Analysis
```bash
uv run .\main.py .\configs\config_bbrs_multi_timeframe.json
```
#### Combined Strategies with Weighted Consensus
```bash
uv run .\main.py .\configs\config_combined.json
```
## Configuration
Strategies are configured using JSON files in the `configs/` directory:
```json
{
"start_date": "2024-01-01",
"stop_date": "2024-01-31",
"initial_usd": 10000,
"timeframes": ["15min"],
"stop_loss_pcts": [0.03, 0.05],
"strategies": [
{
"name": "default",
"weight": 1.0,
"params": {
"timeframe": "15min"
}
}
],
"combination_rules": {
"entry": "any",
"exit": "any",
"min_confidence": 0.5
}
}
```
### Available Strategies
1. **Default Strategy**: Meta-trend analysis using Supertrend indicators
2. **BBRS Strategy**: Bollinger Bands + RSI with market regime detection
### Combination Rules
- **Entry**: `any`, `all`, `majority`, `weighted_consensus`
- **Exit**: `any`, `all`, `priority` (prioritizes stop-loss signals)
## Project Structure
```
Cycles/
├── configs/ # Configuration files
├── cycles/ # Core framework
│ ├── strategies/ # Strategy implementation
│ │ ├── base.py # Base strategy classes
│ │ ├── default_strategy.py
│ │ ├── bbrs_strategy.py
│ │ └── manager.py # Strategy manager
│ ├── Analysis/ # Technical analysis
│ ├── utils/ # Utilities
│ └── charts.py # Visualization
├── docs/ # Documentation
├── data/ # Market data
├── results/ # Backtest results
└── main.py # Main entry point
```
## Documentation
Detailed documentation is available in the `docs/` directory:
- **[Strategy Manager](./docs/strategy_manager.md)** - Multi-strategy orchestration and signal combination
- **[Strategies](./docs/strategies.md)** - Individual strategy implementations and usage
- **[Timeframe System](./docs/timeframe_system.md)** - Advanced timeframe management and multi-timeframe strategies
- **[Analysis](./docs/analysis.md)** - Technical analysis components
- **[Storage Utils](./docs/utils_storage.md)** - Data storage and retrieval
- **[System Utils](./docs/utils_system.md)** - System utilities
## Examples
### Single Strategy Backtest
```bash
# Test default strategy on different timeframes
uv run .\main.py .\configs\config_default.json # 15min
uv run .\main.py .\configs\config_default_5min.json # 5min
```
### Multi-Strategy Backtest
```bash
# Combine multiple strategies with different weights
uv run .\main.py .\configs\config_combined.json
```
### Custom Configuration
Create your own configuration file and run:
```bash
uv run .\main.py .\configs\your_config.json
```
## Output
Backtests generate:
- **CSV Results**: Detailed performance metrics per timeframe/strategy
- **Trade Log**: Individual trade records with entry/exit details
- **Performance Charts**: Visual analysis of strategy performance (in debug mode)
- **Log Files**: Detailed execution logs
## License
[Add your license information here]
## Contributing
[Add contributing guidelines here]

29
configs/config_bbrs.json Normal file
View File

@ -0,0 +1,29 @@
{
"start_date": "2025-03-01",
"stop_date": "2025-03-15",
"initial_usd": 10000,
"timeframes": ["1min"],
"stop_loss_pcts": [0.05],
"strategies": [
{
"name": "bbrs",
"weight": 1.0,
"params": {
"bb_width": 0.05,
"bb_period": 20,
"rsi_period": 14,
"trending_rsi_threshold": [30, 70],
"trending_bb_multiplier": 2.5,
"sideways_rsi_threshold": [40, 60],
"sideways_bb_multiplier": 1.8,
"strategy_name": "MarketRegimeStrategy",
"SqueezeStrategy": true
}
}
],
"combination_rules": {
"entry": "any",
"exit": "any",
"min_confidence": 0.5
}
}

View File

@ -0,0 +1,29 @@
{
"start_date": "2024-01-01",
"stop_date": "2024-01-31",
"initial_usd": 10000,
"timeframes": ["1min"],
"stop_loss_pcts": [0.05],
"strategies": [
{
"name": "bbrs",
"weight": 1.0,
"params": {
"bb_width": 0.05,
"bb_period": 20,
"rsi_period": 14,
"trending_rsi_threshold": [30, 70],
"trending_bb_multiplier": 2.5,
"sideways_rsi_threshold": [40, 60],
"sideways_bb_multiplier": 1.8,
"strategy_name": "MarketRegimeStrategy",
"SqueezeStrategy": true
}
}
],
"combination_rules": {
"entry": "any",
"exit": "any",
"min_confidence": 0.5
}
}

View File

@ -0,0 +1,29 @@
{
"start_date": "2025-03-01",
"stop_date": "2025-03-15",
"initial_usd": 10000,
"timeframes": ["15min"],
"stop_loss_pcts": [0.04],
"strategies": [
{
"name": "default",
"weight": 0.6,
"params": {}
},
{
"name": "bbrs",
"weight": 0.4,
"params": {
"bb_width": 0.05,
"bb_period": 20,
"rsi_period": 14,
"strategy_name": "MarketRegimeStrategy"
}
}
],
"combination_rules": {
"entry": "weighted_consensus",
"exit": "any",
"min_confidence": 0.6
}
}

View File

@ -0,0 +1,19 @@
{
"start_date": "2025-03-01",
"stop_date": "2025-03-15",
"initial_usd": 10000,
"timeframes": ["15min"],
"stop_loss_pcts": [0.03, 0.05],
"strategies": [
{
"name": "default",
"weight": 1.0,
"params": {}
}
],
"combination_rules": {
"entry": "any",
"exit": "any",
"min_confidence": 0.5
}
}

View File

@ -0,0 +1,21 @@
{
"start_date": "2024-01-01",
"stop_date": "2024-01-31",
"initial_usd": 10000,
"timeframes": ["5min"],
"stop_loss_pcts": [0.03, 0.05],
"strategies": [
{
"name": "default",
"weight": 1.0,
"params": {
"timeframe": "5min"
}
}
],
"combination_rules": {
"entry": "any",
"exit": "any",
"min_confidence": 0.5
}
}

View File

@ -37,12 +37,13 @@ class BollingerBands:
'UpperBand',
'LowerBand'.
"""
if price_column not in data_df.columns:
raise ValueError(f"Price column '{price_column}' not found in DataFrame.")
# Work on a copy to avoid modifying the original DataFrame passed to the function
data_df = data_df.copy()
if price_column not in data_df.columns:
raise ValueError(f"Price column '{price_column}' not found in DataFrame.")
if not squeeze:
period = self.config['bb_period']
bb_width_threshold = self.config['bb_width']

View File

@ -14,7 +14,56 @@ class Strategy:
self.config = config
self.logging = logging
def _ensure_datetime_index(self, data):
"""
Ensure the DataFrame has a DatetimeIndex for proper time-series operations.
If the DataFrame has a 'timestamp' column but not a DatetimeIndex, convert it.
Args:
data (DataFrame): Input DataFrame
Returns:
DataFrame: DataFrame with proper DatetimeIndex
"""
if data.empty:
return data
# Check if we have a DatetimeIndex already
if isinstance(data.index, pd.DatetimeIndex):
return data
# Check if we have a 'timestamp' column that we can use as index
if 'timestamp' in data.columns:
data_copy = data.copy()
# Convert timestamp column to datetime if it's not already
if not pd.api.types.is_datetime64_any_dtype(data_copy['timestamp']):
data_copy['timestamp'] = pd.to_datetime(data_copy['timestamp'])
# Set timestamp as index and drop the column
data_copy = data_copy.set_index('timestamp')
if self.logging:
self.logging.info("Converted 'timestamp' column to DatetimeIndex for strategy processing.")
return data_copy
# If we have a regular index but it might be datetime strings, try to convert
try:
if data.index.dtype == 'object':
data_copy = data.copy()
data_copy.index = pd.to_datetime(data_copy.index)
if self.logging:
self.logging.info("Converted index to DatetimeIndex for strategy processing.")
return data_copy
except:
pass
# If we can't create a proper DatetimeIndex, warn and return as-is
if self.logging:
self.logging.warning("Could not create DatetimeIndex for strategy processing. Time-based operations may fail.")
return data
def run(self, data, strategy_name):
# Ensure proper DatetimeIndex before processing
data = self._ensure_datetime_index(data)
if strategy_name == "MarketRegimeStrategy":
result = self.MarketRegimeStrategy(data)
return self.standardize_output(result, strategy_name)
@ -126,8 +175,8 @@ class Strategy:
DataFrame: A unified DataFrame containing original data, BB, RSI, and signals.
"""
# data = aggregate_to_hourly(data, 4)
data = aggregate_to_daily(data)
data = aggregate_to_hourly(data, 1)
# data = aggregate_to_daily(data)
# Calculate Bollinger Bands
bb_calculator = BollingerBands(config=self.config)
@ -264,6 +313,8 @@ class Strategy:
self.logging.warning("CryptoTradingStrategy: Input data is empty or missing 'close'/'volume' columns.")
return pd.DataFrame() # Return empty DataFrame if essential data is missing
print(f"data: {data.head()}")
# Aggregate data
data_15m = aggregate_to_minutes(data.copy(), 15)
data_1h = aggregate_to_hourly(data.copy(), 1)

View File

@ -31,7 +31,8 @@ class Backtest:
"""
Runs the backtest using provided entry and exit strategy functions.
The method iterates over the main DataFrame (self.df), simulating trades based on the entry and exit strategies. It tracks balances, drawdowns, and logs each trade, including fees. At the end, it returns a dictionary of performance statistics.
The method iterates over the main DataFrame (self.df), simulating trades based on the entry and exit strategies.
It tracks balances, drawdowns, and logs each trade, including fees. At the end, it returns a dictionary of performance statistics.
Parameters:
- entry_strategy: function, determines when to enter a trade. Should accept (self, i) and return True to enter.
@ -48,6 +49,7 @@ class Backtest:
self.current_date = self.df['timestamp'].iloc[i]
# check if we are in buy/sell position
if self.position == 0:
if entry_strategy(self, i):
self.handle_entry()

View File

@ -69,3 +69,385 @@ class BacktestCharts:
plt.tight_layout(h_pad=0.1)
plt.show()
@staticmethod
def format_strategy_data_with_trades(strategy_data, backtest_results):
"""
Format strategy data for universal plotting with actual executed trades.
Converts strategy output into the expected column format: "x_type_name"
Args:
strategy_data (DataFrame): Output from strategy with columns like 'close', 'UpperBand', 'LowerBand', 'RSI'
backtest_results (dict): Results from backtest.run() containing actual executed trades
Returns:
DataFrame: Formatted data ready for plot_data function
"""
formatted_df = pd.DataFrame(index=strategy_data.index)
# Plot 1: Price data with Bollinger Bands and actual trade signals
if 'close' in strategy_data.columns:
formatted_df['1_line_close'] = strategy_data['close']
# Bollinger Bands area (prefer standard names, fallback to timeframe-specific)
upper_band_col = None
lower_band_col = None
sma_col = None
# Check for standard BB columns first
if 'UpperBand' in strategy_data.columns and 'LowerBand' in strategy_data.columns:
upper_band_col = 'UpperBand'
lower_band_col = 'LowerBand'
# Check for 15m BB columns
elif 'UpperBand_15m' in strategy_data.columns and 'LowerBand_15m' in strategy_data.columns:
upper_band_col = 'UpperBand_15m'
lower_band_col = 'LowerBand_15m'
if upper_band_col and lower_band_col:
formatted_df['1_area_bb_upper'] = strategy_data[upper_band_col]
formatted_df['1_area_bb_lower'] = strategy_data[lower_band_col]
# SMA/Moving Average line
if 'SMA' in strategy_data.columns:
sma_col = 'SMA'
elif 'SMA_15m' in strategy_data.columns:
sma_col = 'SMA_15m'
if sma_col:
formatted_df['1_line_sma'] = strategy_data[sma_col]
# Strategy buy/sell signals (all signals from strategy) as smaller scatter points
if 'BuySignal' in strategy_data.columns and 'close' in strategy_data.columns:
strategy_buy_points = strategy_data['close'].where(strategy_data['BuySignal'], np.nan)
formatted_df['1_scatter_strategy_buy'] = strategy_buy_points
if 'SellSignal' in strategy_data.columns and 'close' in strategy_data.columns:
strategy_sell_points = strategy_data['close'].where(strategy_data['SellSignal'], np.nan)
formatted_df['1_scatter_strategy_sell'] = strategy_sell_points
# Actual executed trades from backtest results (larger, more prominent)
if 'trades' in backtest_results and backtest_results['trades']:
# Create series for buy and sell points
buy_points = pd.Series(np.nan, index=strategy_data.index)
sell_points = pd.Series(np.nan, index=strategy_data.index)
for trade in backtest_results['trades']:
entry_time = trade.get('entry_time')
exit_time = trade.get('exit_time')
entry_price = trade.get('entry')
exit_price = trade.get('exit')
# Find closest index for entry time
if entry_time is not None and entry_price is not None:
try:
if isinstance(entry_time, str):
entry_time = pd.to_datetime(entry_time)
# Find the closest index to entry_time
closest_entry_idx = strategy_data.index.get_indexer([entry_time], method='nearest')[0]
if closest_entry_idx >= 0:
buy_points.iloc[closest_entry_idx] = entry_price
except (ValueError, IndexError, TypeError):
pass # Skip if can't find matching time
# Find closest index for exit time
if exit_time is not None and exit_price is not None:
try:
if isinstance(exit_time, str):
exit_time = pd.to_datetime(exit_time)
# Find the closest index to exit_time
closest_exit_idx = strategy_data.index.get_indexer([exit_time], method='nearest')[0]
if closest_exit_idx >= 0:
sell_points.iloc[closest_exit_idx] = exit_price
except (ValueError, IndexError, TypeError):
pass # Skip if can't find matching time
formatted_df['1_scatter_actual_buy'] = buy_points
formatted_df['1_scatter_actual_sell'] = sell_points
# Stop Loss and Take Profit levels
if 'StopLoss' in strategy_data.columns:
formatted_df['1_line_stop_loss'] = strategy_data['StopLoss']
if 'TakeProfit' in strategy_data.columns:
formatted_df['1_line_take_profit'] = strategy_data['TakeProfit']
# Plot 2: RSI
rsi_col = None
if 'RSI' in strategy_data.columns:
rsi_col = 'RSI'
elif 'RSI_15m' in strategy_data.columns:
rsi_col = 'RSI_15m'
if rsi_col:
formatted_df['2_line_rsi'] = strategy_data[rsi_col]
# Add RSI overbought/oversold levels
formatted_df['2_line_rsi_overbought'] = 70
formatted_df['2_line_rsi_oversold'] = 30
# Plot 3: Volume (if available)
if 'volume' in strategy_data.columns:
formatted_df['3_bar_volume'] = strategy_data['volume']
# Add volume moving average if available
if 'VolumeMA_15m' in strategy_data.columns:
formatted_df['3_line_volume_ma'] = strategy_data['VolumeMA_15m']
return formatted_df
@staticmethod
def format_strategy_data(strategy_data):
"""
Format strategy data for universal plotting (without trade signals).
Converts strategy output into the expected column format: "x_type_name"
Args:
strategy_data (DataFrame): Output from strategy with columns like 'close', 'UpperBand', 'LowerBand', 'RSI'
Returns:
DataFrame: Formatted data ready for plot_data function
"""
formatted_df = pd.DataFrame(index=strategy_data.index)
# Plot 1: Price data with Bollinger Bands
if 'close' in strategy_data.columns:
formatted_df['1_line_close'] = strategy_data['close']
# Bollinger Bands area (prefer standard names, fallback to timeframe-specific)
upper_band_col = None
lower_band_col = None
sma_col = None
# Check for standard BB columns first
if 'UpperBand' in strategy_data.columns and 'LowerBand' in strategy_data.columns:
upper_band_col = 'UpperBand'
lower_band_col = 'LowerBand'
# Check for 15m BB columns
elif 'UpperBand_15m' in strategy_data.columns and 'LowerBand_15m' in strategy_data.columns:
upper_band_col = 'UpperBand_15m'
lower_band_col = 'LowerBand_15m'
if upper_band_col and lower_band_col:
formatted_df['1_area_bb_upper'] = strategy_data[upper_band_col]
formatted_df['1_area_bb_lower'] = strategy_data[lower_band_col]
# SMA/Moving Average line
if 'SMA' in strategy_data.columns:
sma_col = 'SMA'
elif 'SMA_15m' in strategy_data.columns:
sma_col = 'SMA_15m'
if sma_col:
formatted_df['1_line_sma'] = strategy_data[sma_col]
# Stop Loss and Take Profit levels
if 'StopLoss' in strategy_data.columns:
formatted_df['1_line_stop_loss'] = strategy_data['StopLoss']
if 'TakeProfit' in strategy_data.columns:
formatted_df['1_line_take_profit'] = strategy_data['TakeProfit']
# Plot 2: RSI
rsi_col = None
if 'RSI' in strategy_data.columns:
rsi_col = 'RSI'
elif 'RSI_15m' in strategy_data.columns:
rsi_col = 'RSI_15m'
if rsi_col:
formatted_df['2_line_rsi'] = strategy_data[rsi_col]
# Add RSI overbought/oversold levels
formatted_df['2_line_rsi_overbought'] = 70
formatted_df['2_line_rsi_oversold'] = 30
# Plot 3: Volume (if available)
if 'volume' in strategy_data.columns:
formatted_df['3_bar_volume'] = strategy_data['volume']
# Add volume moving average if available
if 'VolumeMA_15m' in strategy_data.columns:
formatted_df['3_line_volume_ma'] = strategy_data['VolumeMA_15m']
return formatted_df
@staticmethod
def plot_data(df):
"""
Universal plot function for any formatted data.
- df: DataFrame with column names in format "x_type_name" where:
x = plot number (subplot)
type = plot type (line, area, scatter, bar, etc.)
name = descriptive name for the data series
"""
if df.empty:
print("No data to plot")
return
# Parse all columns
plot_info = []
for column in df.columns:
parts = column.split('_', 2) # Split into max 3 parts
if len(parts) < 3:
print(f"Warning: Skipping column '{column}' - invalid format. Expected 'x_type_name'")
continue
try:
plot_number = int(parts[0])
plot_type = parts[1].lower()
plot_name = parts[2]
plot_info.append((plot_number, plot_type, plot_name, column))
except ValueError:
print(f"Warning: Skipping column '{column}' - invalid plot number")
continue
if not plot_info:
print("No valid columns found for plotting")
return
# Group by plot number
plots = {}
for plot_num, plot_type, plot_name, column in plot_info:
if plot_num not in plots:
plots[plot_num] = []
plots[plot_num].append((plot_type, plot_name, column))
# Sort plot numbers
plot_numbers = sorted(plots.keys())
n_plots = len(plot_numbers)
# Create subplots
fig, axs = plt.subplots(n_plots, 1, figsize=(16, 6 * n_plots), sharex=True)
if n_plots == 1:
axs = [axs] # Ensure axs is always a list
# Plot each subplot
for i, plot_num in enumerate(plot_numbers):
ax = axs[i]
plot_items = plots[plot_num]
# Handle Bollinger Bands area first (needs special handling)
bb_upper = None
bb_lower = None
for plot_type, plot_name, column in plot_items:
if plot_type == 'area' and 'bb_upper' in plot_name:
bb_upper = df[column]
elif plot_type == 'area' and 'bb_lower' in plot_name:
bb_lower = df[column]
# Plot Bollinger Bands area if both bounds exist
if bb_upper is not None and bb_lower is not None:
ax.fill_between(df.index, bb_upper, bb_lower, alpha=0.2, color='gray', label='Bollinger Bands')
# Plot other items
for plot_type, plot_name, column in plot_items:
if plot_type == 'area' and ('bb_upper' in plot_name or 'bb_lower' in plot_name):
continue # Already handled above
data = df[column].dropna() # Remove NaN values for cleaner plots
if plot_type == 'line':
color = None
linestyle = '-'
alpha = 1.0
# Special styling for different line types
if 'overbought' in plot_name:
color = 'red'
linestyle = '--'
alpha = 0.7
elif 'oversold' in plot_name:
color = 'green'
linestyle = '--'
alpha = 0.7
elif 'stop_loss' in plot_name:
color = 'red'
linestyle = ':'
alpha = 0.8
elif 'take_profit' in plot_name:
color = 'green'
linestyle = ':'
alpha = 0.8
elif 'sma' in plot_name:
color = 'orange'
alpha = 0.8
elif 'volume_ma' in plot_name:
color = 'purple'
alpha = 0.7
ax.plot(data.index, data, label=plot_name.replace('_', ' ').title(),
color=color, linestyle=linestyle, alpha=alpha)
elif plot_type == 'scatter':
color = 'green' if 'buy' in plot_name else 'red' if 'sell' in plot_name else 'blue'
marker = '^' if 'buy' in plot_name else 'v' if 'sell' in plot_name else 'o'
size = 100 if 'buy' in plot_name or 'sell' in plot_name else 50
alpha = 0.8
zorder = 5
label_name = plot_name.replace('_', ' ').title()
# Special styling for different signal types
if 'actual_buy' in plot_name:
color = 'darkgreen'
marker = '^'
size = 120
alpha = 1.0
zorder = 10 # Higher z-order to appear on top
label_name = 'Actual Buy Trades'
elif 'actual_sell' in plot_name:
color = 'darkred'
marker = 'v'
size = 120
alpha = 1.0
zorder = 10 # Higher z-order to appear on top
label_name = 'Actual Sell Trades'
elif 'strategy_buy' in plot_name:
color = 'lightgreen'
marker = '^'
size = 60
alpha = 0.6
zorder = 3 # Lower z-order to appear behind actual trades
label_name = 'Strategy Buy Signals'
elif 'strategy_sell' in plot_name:
color = 'lightcoral'
marker = 'v'
size = 60
alpha = 0.6
zorder = 3 # Lower z-order to appear behind actual trades
label_name = 'Strategy Sell Signals'
ax.scatter(data.index, data, label=label_name,
color=color, marker=marker, s=size, alpha=alpha, zorder=zorder)
elif plot_type == 'area':
ax.fill_between(data.index, data, alpha=0.5, label=plot_name.replace('_', ' ').title())
elif plot_type == 'bar':
ax.bar(data.index, data, alpha=0.7, label=plot_name.replace('_', ' ').title())
else:
print(f"Warning: Plot type '{plot_type}' not supported for column '{column}'")
# Customize subplot
ax.grid(True, alpha=0.3)
ax.legend()
# Set titles and labels
if plot_num == 1:
ax.set_title('Price Chart with Bollinger Bands and Signals')
ax.set_ylabel('Price')
elif plot_num == 2:
ax.set_title('RSI Indicator')
ax.set_ylabel('RSI')
ax.set_ylim(0, 100)
elif plot_num == 3:
ax.set_title('Volume')
ax.set_ylabel('Volume')
else:
ax.set_title(f'Plot {plot_num}')
# Set x-axis label only on the bottom subplot
axs[-1].set_xlabel('Time')
plt.tight_layout()
plt.show()

View File

@ -0,0 +1,40 @@
"""
Strategies Module
This module contains the strategy management system for trading strategies.
It provides a flexible framework for implementing, combining, and managing multiple trading strategies.
Components:
- StrategyBase: Abstract base class for all strategies
- DefaultStrategy: Meta-trend based strategy
- BBRSStrategy: Bollinger Bands + RSI strategy
- StrategyManager: Orchestrates multiple strategies
- StrategySignal: Represents trading signals with confidence levels
Usage:
from cycles.strategies import StrategyManager, create_strategy_manager
# Create strategy manager from config
strategy_manager = create_strategy_manager(config)
# Or create individual strategies
from cycles.strategies import DefaultStrategy, BBRSStrategy
default_strategy = DefaultStrategy(weight=1.0, params={})
"""
from .base import StrategyBase, StrategySignal
from .default_strategy import DefaultStrategy
from .bbrs_strategy import BBRSStrategy
from .manager import StrategyManager, create_strategy_manager
__all__ = [
'StrategyBase',
'StrategySignal',
'DefaultStrategy',
'BBRSStrategy',
'StrategyManager',
'create_strategy_manager'
]
__version__ = '1.0.0'
__author__ = 'TCP Cycles Team'

250
cycles/strategies/base.py Normal file
View File

@ -0,0 +1,250 @@
"""
Base classes for the strategy management system.
This module contains the fundamental building blocks for all trading strategies:
- StrategySignal: Represents trading signals with confidence and metadata
- StrategyBase: Abstract base class that all strategies must inherit from
"""
import pandas as pd
from abc import ABC, abstractmethod
from typing import Dict, Optional, List, Union
class StrategySignal:
"""
Represents a trading signal from a strategy.
A signal encapsulates the strategy's recommendation along with confidence
level, optional price target, and additional metadata.
Attributes:
signal_type (str): Type of signal - "ENTRY", "EXIT", or "HOLD"
confidence (float): Confidence level from 0.0 to 1.0
price (Optional[float]): Optional specific price for the signal
metadata (Dict): Additional signal data and context
Example:
# Entry signal with high confidence
signal = StrategySignal("ENTRY", confidence=0.8)
# Exit signal with stop loss price
signal = StrategySignal("EXIT", confidence=1.0, price=50000,
metadata={"type": "STOP_LOSS"})
"""
def __init__(self, signal_type: str, confidence: float = 1.0,
price: Optional[float] = None, metadata: Optional[Dict] = None):
"""
Initialize a strategy signal.
Args:
signal_type: Type of signal ("ENTRY", "EXIT", "HOLD")
confidence: Confidence level (0.0 to 1.0)
price: Optional specific price for the signal
metadata: Additional signal data and context
"""
self.signal_type = signal_type
self.confidence = max(0.0, min(1.0, confidence)) # Clamp to [0,1]
self.price = price
self.metadata = metadata or {}
def __repr__(self) -> str:
"""String representation of the signal."""
return (f"StrategySignal(type={self.signal_type}, "
f"confidence={self.confidence:.2f}, "
f"price={self.price}, metadata={self.metadata})")
class StrategyBase(ABC):
"""
Abstract base class for all trading strategies.
This class defines the interface that all strategies must implement:
- get_timeframes(): Specify required timeframes for the strategy
- initialize(): Setup strategy with backtester data
- get_entry_signal(): Generate entry signals
- get_exit_signal(): Generate exit signals
- get_confidence(): Optional confidence calculation
Attributes:
name (str): Strategy name
weight (float): Strategy weight for combination
params (Dict): Strategy parameters
initialized (bool): Whether strategy has been initialized
timeframes_data (Dict): Resampled data for different timeframes
Example:
class MyStrategy(StrategyBase):
def get_timeframes(self):
return ["15min"] # This strategy works on 15-minute data
def initialize(self, backtester):
# Setup strategy indicators using self.timeframes_data["15min"]
self.initialized = True
def get_entry_signal(self, backtester, df_index):
# Return StrategySignal based on analysis
if should_enter:
return StrategySignal("ENTRY", confidence=0.7)
return StrategySignal("HOLD", confidence=0.0)
"""
def __init__(self, name: str, weight: float = 1.0, params: Optional[Dict] = None):
"""
Initialize the strategy base.
Args:
name: Strategy name/identifier
weight: Strategy weight for combination (default: 1.0)
params: Strategy-specific parameters
"""
self.name = name
self.weight = weight
self.params = params or {}
self.initialized = False
self.timeframes_data = {} # Will store resampled data for each timeframe
def get_timeframes(self) -> List[str]:
"""
Get the list of timeframes required by this strategy.
Override this method to specify which timeframes your strategy needs.
The base class will automatically resample the 1-minute data to these timeframes
and make them available in self.timeframes_data.
Returns:
List[str]: List of timeframe strings (e.g., ["1min", "15min", "1h"])
Example:
def get_timeframes(self):
return ["15min"] # Strategy needs 15-minute data
def get_timeframes(self):
return ["5min", "15min", "1h"] # Multi-timeframe strategy
"""
return ["1min"] # Default to 1-minute data
def _resample_data(self, original_data: pd.DataFrame) -> None:
"""
Resample the original 1-minute data to all required timeframes.
This method is called automatically during initialization to create
resampled versions of the data for each timeframe the strategy needs.
Args:
original_data: Original 1-minute OHLCV data with DatetimeIndex
"""
self.timeframes_data = {}
for timeframe in self.get_timeframes():
if timeframe == "1min":
# For 1-minute data, just use the original
self.timeframes_data[timeframe] = original_data.copy()
else:
# Resample to the specified timeframe
resampled = original_data.resample(timeframe).agg({
'open': 'first',
'high': 'max',
'low': 'min',
'close': 'last',
'volume': 'sum'
}).dropna()
self.timeframes_data[timeframe] = resampled
def get_data_for_timeframe(self, timeframe: str) -> Optional[pd.DataFrame]:
"""
Get resampled data for a specific timeframe.
Args:
timeframe: Timeframe string (e.g., "15min", "1h")
Returns:
pd.DataFrame: Resampled OHLCV data or None if timeframe not available
"""
return self.timeframes_data.get(timeframe)
def get_primary_timeframe_data(self) -> pd.DataFrame:
"""
Get data for the primary (first) timeframe.
Returns:
pd.DataFrame: Data for the first timeframe in get_timeframes() list
"""
primary_timeframe = self.get_timeframes()[0]
return self.timeframes_data[primary_timeframe]
@abstractmethod
def initialize(self, backtester) -> None:
"""
Initialize strategy with backtester data.
This method is called once before backtesting begins.
The original 1-minute data will already be resampled to all required timeframes
and available in self.timeframes_data.
Strategies should setup indicators, validate data, and
set self.initialized = True when complete.
Args:
backtester: Backtest instance with data and configuration
"""
pass
@abstractmethod
def get_entry_signal(self, backtester, df_index: int) -> StrategySignal:
"""
Generate entry signal for the given data index.
The df_index refers to the index in the backtester's working dataframe,
which corresponds to the primary timeframe data.
Args:
backtester: Backtest instance with current state
df_index: Current index in the primary timeframe dataframe
Returns:
StrategySignal: Entry signal with confidence level
"""
pass
@abstractmethod
def get_exit_signal(self, backtester, df_index: int) -> StrategySignal:
"""
Generate exit signal for the given data index.
The df_index refers to the index in the backtester's working dataframe,
which corresponds to the primary timeframe data.
Args:
backtester: Backtest instance with current state
df_index: Current index in the primary timeframe dataframe
Returns:
StrategySignal: Exit signal with confidence level
"""
pass
def get_confidence(self, backtester, df_index: int) -> float:
"""
Get strategy confidence for the current market state.
Default implementation returns 1.0. Strategies can override
this to provide dynamic confidence based on market conditions.
Args:
backtester: Backtest instance with current state
df_index: Current index in the primary timeframe dataframe
Returns:
float: Confidence level (0.0 to 1.0)
"""
return 1.0
def __repr__(self) -> str:
"""String representation of the strategy."""
timeframes = self.get_timeframes()
return (f"{self.__class__.__name__}(name={self.name}, "
f"weight={self.weight}, timeframes={timeframes}, "
f"initialized={self.initialized})")

View File

@ -0,0 +1,344 @@
"""
Bollinger Bands + RSI Strategy (BBRS)
This module implements a sophisticated trading strategy that combines Bollinger Bands
and RSI indicators with market regime detection. The strategy adapts its parameters
based on whether the market is trending or moving sideways.
Key Features:
- Dynamic parameter adjustment based on market regime
- Bollinger Band squeeze detection
- RSI overbought/oversold conditions
- Market regime-specific thresholds
- Multi-timeframe analysis support
"""
import pandas as pd
import numpy as np
import logging
from typing import Tuple, Optional, List
from .base import StrategyBase, StrategySignal
class BBRSStrategy(StrategyBase):
"""
Bollinger Bands + RSI Strategy implementation.
This strategy uses Bollinger Bands and RSI indicators with market regime detection
to generate trading signals. It adapts its parameters based on whether the market
is in a trending or sideways regime.
The strategy works with 1-minute data as input and lets the underlying Strategy class
handle internal resampling to the timeframes it needs (typically 15min and 1h).
Stop-loss execution uses 1-minute precision.
Parameters:
bb_width (float): Bollinger Band width threshold (default: 0.05)
bb_period (int): Bollinger Band period (default: 20)
rsi_period (int): RSI calculation period (default: 14)
trending_rsi_threshold (list): RSI thresholds for trending market [low, high]
trending_bb_multiplier (float): BB multiplier for trending market
sideways_rsi_threshold (list): RSI thresholds for sideways market [low, high]
sideways_bb_multiplier (float): BB multiplier for sideways market
strategy_name (str): Strategy implementation name ("MarketRegimeStrategy" or "CryptoTradingStrategy")
SqueezeStrategy (bool): Enable squeeze strategy
stop_loss_pct (float): Stop loss percentage (default: 0.05)
Example:
params = {
"bb_width": 0.05,
"bb_period": 20,
"rsi_period": 14,
"strategy_name": "MarketRegimeStrategy",
"SqueezeStrategy": true
}
strategy = BBRSStrategy(weight=1.0, params=params)
"""
def __init__(self, weight: float = 1.0, params: Optional[dict] = None):
"""
Initialize the BBRS strategy.
Args:
weight: Strategy weight for combination (default: 1.0)
params: Strategy parameters for Bollinger Bands and RSI
"""
super().__init__("bbrs", weight, params)
def get_timeframes(self) -> List[str]:
"""
Get the timeframes required by the BBRS strategy.
BBRS strategy uses 1-minute data as input and lets the Strategy class
handle internal resampling to the timeframes it needs (15min, 1h, etc.).
We still include 1min for stop-loss precision.
Returns:
List[str]: List of timeframes needed for the strategy
"""
# BBRS strategy works with 1-minute data and lets Strategy class handle resampling
return ["1min"]
def initialize(self, backtester) -> None:
"""
Initialize BBRS strategy with signal processing.
Sets up the strategy by:
1. Using 1-minute data directly (Strategy class handles internal resampling)
2. Running the BBRS strategy processing on 1-minute data
3. Creating signals aligned with backtester expectations
Args:
backtester: Backtest instance with OHLCV data
"""
# Resample to get 1-minute data (which should be the original data)
self._resample_data(backtester.original_df)
# Get 1-minute data for strategy processing - Strategy class will handle internal resampling
min1_data = self.get_data_for_timeframe("1min")
# Initialize empty signal series for backtester compatibility
# Note: These will be populated after strategy processing
backtester.strategies["buy_signals"] = pd.Series(False, index=range(len(min1_data)))
backtester.strategies["sell_signals"] = pd.Series(False, index=range(len(min1_data)))
backtester.strategies["stop_loss_pct"] = self.params.get("stop_loss_pct", 0.05)
backtester.strategies["primary_timeframe"] = "1min"
# Run strategy processing on 1-minute data
self._run_strategy_processing(backtester)
self.initialized = True
def _run_strategy_processing(self, backtester) -> None:
"""
Run the actual BBRS strategy processing.
Uses the Strategy class from cycles.Analysis.strategies to process
the 1-minute data. The Strategy class will handle internal resampling
to the timeframes it needs (15min, 1h, etc.) and generate buy/sell signals.
Args:
backtester: Backtest instance with timeframes_data available
"""
from cycles.Analysis.strategies import Strategy
# Get 1-minute data for strategy processing - let Strategy class handle resampling
strategy_data = self.get_data_for_timeframe("1min")
# Configure strategy parameters with defaults
config_strategy = {
"bb_width": self.params.get("bb_width", 0.05),
"bb_period": self.params.get("bb_period", 20),
"rsi_period": self.params.get("rsi_period", 14),
"trending": {
"rsi_threshold": self.params.get("trending_rsi_threshold", [30, 70]),
"bb_std_dev_multiplier": self.params.get("trending_bb_multiplier", 2.5),
},
"sideways": {
"rsi_threshold": self.params.get("sideways_rsi_threshold", [40, 60]),
"bb_std_dev_multiplier": self.params.get("sideways_bb_multiplier", 1.8),
},
"strategy_name": self.params.get("strategy_name", "MarketRegimeStrategy"),
"SqueezeStrategy": self.params.get("SqueezeStrategy", True)
}
# Run strategy processing on 1-minute data - Strategy class handles internal resampling
strategy = Strategy(config=config_strategy, logging=logging)
processed_data = strategy.run(strategy_data, config_strategy["strategy_name"])
# Store processed data for plotting and analysis
backtester.processed_data = processed_data
if processed_data.empty:
# If strategy processing failed, keep empty signals
return
# Extract signals from processed data
buy_signals_raw = processed_data.get('BuySignal', pd.Series(False, index=processed_data.index)).astype(bool)
sell_signals_raw = processed_data.get('SellSignal', pd.Series(False, index=processed_data.index)).astype(bool)
# The processed_data will be on whatever timeframe the Strategy class outputs
# We need to map these signals back to 1-minute resolution for backtesting
original_1min_data = self.get_data_for_timeframe("1min")
# Reindex signals to 1-minute resolution using forward-fill
buy_signals_1min = buy_signals_raw.reindex(original_1min_data.index, method='ffill').fillna(False)
sell_signals_1min = sell_signals_raw.reindex(original_1min_data.index, method='ffill').fillna(False)
# Convert to integer index to match backtester expectations
backtester.strategies["buy_signals"] = pd.Series(buy_signals_1min.values, index=range(len(buy_signals_1min)))
backtester.strategies["sell_signals"] = pd.Series(sell_signals_1min.values, index=range(len(sell_signals_1min)))
def get_entry_signal(self, backtester, df_index: int) -> StrategySignal:
"""
Generate entry signal based on BBRS buy signals.
Entry occurs when the BBRS strategy processing has generated
a buy signal based on Bollinger Bands and RSI conditions on
the primary timeframe.
Args:
backtester: Backtest instance with current state
df_index: Current index in the primary timeframe dataframe
Returns:
StrategySignal: Entry signal if buy condition met, hold otherwise
"""
if not self.initialized:
return StrategySignal("HOLD", confidence=0.0)
if df_index >= len(backtester.strategies["buy_signals"]):
return StrategySignal("HOLD", confidence=0.0)
if backtester.strategies["buy_signals"].iloc[df_index]:
# High confidence for BBRS buy signals
confidence = self._calculate_signal_confidence(backtester, df_index, "entry")
return StrategySignal("ENTRY", confidence=confidence)
return StrategySignal("HOLD", confidence=0.0)
def get_exit_signal(self, backtester, df_index: int) -> StrategySignal:
"""
Generate exit signal based on BBRS sell signals or stop loss.
Exit occurs when:
1. BBRS strategy generates a sell signal
2. Stop loss is triggered based on price movement
Args:
backtester: Backtest instance with current state
df_index: Current index in the primary timeframe dataframe
Returns:
StrategySignal: Exit signal with type and price, or hold signal
"""
if not self.initialized:
return StrategySignal("HOLD", confidence=0.0)
if df_index >= len(backtester.strategies["sell_signals"]):
return StrategySignal("HOLD", confidence=0.0)
# Check for sell signal
if backtester.strategies["sell_signals"].iloc[df_index]:
confidence = self._calculate_signal_confidence(backtester, df_index, "exit")
return StrategySignal("EXIT", confidence=confidence,
metadata={"type": "SELL_SIGNAL"})
# Check for stop loss using 1-minute data for precision
stop_loss_result, sell_price = self._check_stop_loss(backtester)
if stop_loss_result:
return StrategySignal("EXIT", confidence=1.0, price=sell_price,
metadata={"type": "STOP_LOSS"})
return StrategySignal("HOLD", confidence=0.0)
def get_confidence(self, backtester, df_index: int) -> float:
"""
Get strategy confidence based on signal strength and market conditions.
Confidence can be enhanced by analyzing multiple timeframes and
market regime consistency.
Args:
backtester: Backtest instance with current state
df_index: Current index in the primary timeframe dataframe
Returns:
float: Confidence level (0.0 to 1.0)
"""
if not self.initialized:
return 0.0
# Check for active signals
has_buy_signal = (df_index < len(backtester.strategies["buy_signals"]) and
backtester.strategies["buy_signals"].iloc[df_index])
has_sell_signal = (df_index < len(backtester.strategies["sell_signals"]) and
backtester.strategies["sell_signals"].iloc[df_index])
if has_buy_signal or has_sell_signal:
signal_type = "entry" if has_buy_signal else "exit"
return self._calculate_signal_confidence(backtester, df_index, signal_type)
# Moderate confidence during neutral periods
return 0.5
def _calculate_signal_confidence(self, backtester, df_index: int, signal_type: str) -> float:
"""
Calculate confidence level for a signal based on multiple factors.
Can consider multiple timeframes, market regime, volatility, etc.
Args:
backtester: Backtest instance
df_index: Current index
signal_type: "entry" or "exit"
Returns:
float: Confidence level (0.0 to 1.0)
"""
base_confidence = 1.0
# TODO: Implement multi-timeframe confirmation
# For now, return high confidence for primary signals
# Future enhancements could include:
# - Checking confirmation from additional timeframes
# - Analyzing market regime consistency
# - Considering volatility levels
# - RSI and BB position analysis
return base_confidence
def _check_stop_loss(self, backtester) -> Tuple[bool, Optional[float]]:
"""
Check if stop loss is triggered using 1-minute data for precision.
Uses 1-minute data regardless of primary timeframe to ensure
accurate stop loss execution.
Args:
backtester: Backtest instance with current trade state
Returns:
Tuple[bool, Optional[float]]: (stop_loss_triggered, sell_price)
"""
# Calculate stop loss price
stop_price = backtester.entry_price * (1 - backtester.strategies["stop_loss_pct"])
# Use 1-minute data for precise stop loss checking
min1_data = self.get_data_for_timeframe("1min")
if min1_data is None:
# Fallback to original_df if 1min timeframe not available
min1_data = backtester.original_df if hasattr(backtester, 'original_df') else backtester.min1_df
min1_index = min1_data.index
# Find data range from entry to current time
start_candidates = min1_index[min1_index >= backtester.entry_time]
if len(start_candidates) == 0:
return False, None
backtester.current_trade_min1_start_idx = start_candidates[0]
end_candidates = min1_index[min1_index <= backtester.current_date]
if len(end_candidates) == 0:
return False, None
backtester.current_min1_end_idx = end_candidates[-1]
# Check if any candle in the range triggered stop loss
min1_slice = min1_data.loc[backtester.current_trade_min1_start_idx:backtester.current_min1_end_idx]
if (min1_slice['low'] <= stop_price).any():
# Find the first candle that triggered stop loss
stop_candle = min1_slice[min1_slice['low'] <= stop_price].iloc[0]
# Use open price if it gapped below stop, otherwise use stop price
if stop_candle['open'] < stop_price:
sell_price = stop_candle['open']
else:
sell_price = stop_price
return True, sell_price
return False, None

View File

@ -0,0 +1,254 @@
"""
Default Meta-Trend Strategy
This module implements the default trading strategy based on meta-trend analysis
using multiple Supertrend indicators. The strategy enters when trends align
and exits on trend reversal or stop loss.
The meta-trend is calculated by comparing three Supertrend indicators:
- Entry: When meta-trend changes from != 1 to == 1
- Exit: When meta-trend changes to -1 or stop loss is triggered
"""
import numpy as np
from typing import Tuple, Optional, List
from .base import StrategyBase, StrategySignal
class DefaultStrategy(StrategyBase):
"""
Default meta-trend strategy implementation.
This strategy uses multiple Supertrend indicators to determine market direction.
It generates entry signals when all three Supertrend indicators align in an
upward direction, and exit signals when they reverse or stop loss is triggered.
The strategy works best on 15-minute timeframes but can be configured for other timeframes.
Parameters:
stop_loss_pct (float): Stop loss percentage (default: 0.03)
timeframe (str): Preferred timeframe for analysis (default: "15min")
Example:
strategy = DefaultStrategy(weight=1.0, params={"stop_loss_pct": 0.05, "timeframe": "15min"})
"""
def __init__(self, weight: float = 1.0, params: Optional[dict] = None):
"""
Initialize the default strategy.
Args:
weight: Strategy weight for combination (default: 1.0)
params: Strategy parameters including stop_loss_pct and timeframe
"""
super().__init__("default", weight, params)
def get_timeframes(self) -> List[str]:
"""
Get the timeframes required by the default strategy.
The default strategy works on a single timeframe (typically 15min)
but also needs 1min data for precise stop-loss execution.
Returns:
List[str]: List containing primary timeframe and 1min for stop-loss
"""
primary_timeframe = self.params.get("timeframe", "15min")
# Always include 1min for stop-loss precision, avoid duplicates
timeframes = [primary_timeframe]
if primary_timeframe != "1min":
timeframes.append("1min")
return timeframes
def initialize(self, backtester) -> None:
"""
Initialize meta trend calculation using Supertrend indicators.
Calculates the meta-trend by comparing three Supertrend indicators.
When all three agree on direction, meta-trend follows that direction.
Otherwise, meta-trend is neutral (0).
Args:
backtester: Backtest instance with OHLCV data
"""
from cycles.Analysis.supertrend import Supertrends
# First, resample the original 1-minute data to required timeframes
self._resample_data(backtester.original_df)
# Get the primary timeframe data for strategy calculations
primary_timeframe = self.get_timeframes()[0]
strategy_data = self.get_data_for_timeframe(primary_timeframe)
# Calculate Supertrend indicators on the primary timeframe
supertrends = Supertrends(strategy_data, verbose=False)
supertrend_results_list = supertrends.calculate_supertrend_indicators()
# Extract trend arrays from each Supertrend
trends = [st['results']['trend'] for st in supertrend_results_list]
trends_arr = np.stack(trends, axis=1)
# Calculate meta-trend: all three must agree for direction signal
meta_trend = np.where(
(trends_arr[:,0] == trends_arr[:,1]) & (trends_arr[:,1] == trends_arr[:,2]),
trends_arr[:,0],
0 # Neutral when trends don't agree
)
# Store in backtester for access during trading
# Note: backtester.df should now be using our primary timeframe
backtester.strategies["meta_trend"] = meta_trend
backtester.strategies["stop_loss_pct"] = self.params.get("stop_loss_pct", 0.03)
backtester.strategies["primary_timeframe"] = primary_timeframe
self.initialized = True
def get_entry_signal(self, backtester, df_index: int) -> StrategySignal:
"""
Generate entry signal based on meta-trend direction change.
Entry occurs when meta-trend changes from != 1 to == 1, indicating
all Supertrend indicators now agree on upward direction.
Args:
backtester: Backtest instance with current state
df_index: Current index in the primary timeframe dataframe
Returns:
StrategySignal: Entry signal if trend aligns, hold signal otherwise
"""
if not self.initialized:
return StrategySignal("HOLD", 0.0)
if df_index < 1:
return StrategySignal("HOLD", 0.0)
# Check for meta-trend entry condition
prev_trend = backtester.strategies["meta_trend"][df_index - 1]
curr_trend = backtester.strategies["meta_trend"][df_index]
if prev_trend != 1 and curr_trend == 1:
# Strong confidence when all indicators align for entry
return StrategySignal("ENTRY", confidence=1.0)
return StrategySignal("HOLD", confidence=0.0)
def get_exit_signal(self, backtester, df_index: int) -> StrategySignal:
"""
Generate exit signal based on meta-trend reversal or stop loss.
Exit occurs when:
1. Meta-trend changes to -1 (trend reversal)
2. Stop loss is triggered based on price movement
Args:
backtester: Backtest instance with current state
df_index: Current index in the primary timeframe dataframe
Returns:
StrategySignal: Exit signal with type and price, or hold signal
"""
if not self.initialized:
return StrategySignal("HOLD", 0.0)
if df_index < 1:
return StrategySignal("HOLD", 0.0)
# Check for meta-trend exit signal
prev_trend = backtester.strategies["meta_trend"][df_index - 1]
curr_trend = backtester.strategies["meta_trend"][df_index]
if prev_trend != 1 and curr_trend == -1:
return StrategySignal("EXIT", confidence=1.0,
metadata={"type": "META_TREND_EXIT_SIGNAL"})
# Check for stop loss using 1-minute data for precision
stop_loss_result, sell_price = self._check_stop_loss(backtester)
if stop_loss_result:
return StrategySignal("EXIT", confidence=1.0, price=sell_price,
metadata={"type": "STOP_LOSS"})
return StrategySignal("HOLD", confidence=0.0)
def get_confidence(self, backtester, df_index: int) -> float:
"""
Get strategy confidence based on meta-trend strength.
Higher confidence when meta-trend is strongly directional,
lower confidence during neutral periods.
Args:
backtester: Backtest instance with current state
df_index: Current index in the primary timeframe dataframe
Returns:
float: Confidence level (0.0 to 1.0)
"""
if not self.initialized or df_index >= len(backtester.strategies["meta_trend"]):
return 0.0
curr_trend = backtester.strategies["meta_trend"][df_index]
# High confidence for strong directional signals
if curr_trend == 1 or curr_trend == -1:
return 1.0
# Low confidence for neutral trend
return 0.3
def _check_stop_loss(self, backtester) -> Tuple[bool, Optional[float]]:
"""
Check if stop loss is triggered based on price movement.
Uses 1-minute data for precise stop loss checking regardless of
the primary timeframe used for strategy signals.
Args:
backtester: Backtest instance with current trade state
Returns:
Tuple[bool, Optional[float]]: (stop_loss_triggered, sell_price)
"""
# Calculate stop loss price
stop_price = backtester.entry_price * (1 - backtester.strategies["stop_loss_pct"])
# Use 1-minute data for precise stop loss checking
min1_data = self.get_data_for_timeframe("1min")
if min1_data is None:
# Fallback to original_df if 1min timeframe not available
min1_data = backtester.original_df if hasattr(backtester, 'original_df') else backtester.min1_df
min1_index = min1_data.index
# Find data range from entry to current time
start_candidates = min1_index[min1_index >= backtester.entry_time]
if len(start_candidates) == 0:
return False, None
backtester.current_trade_min1_start_idx = start_candidates[0]
end_candidates = min1_index[min1_index <= backtester.current_date]
if len(end_candidates) == 0:
return False, None
backtester.current_min1_end_idx = end_candidates[-1]
# Check if any candle in the range triggered stop loss
min1_slice = min1_data.loc[backtester.current_trade_min1_start_idx:backtester.current_min1_end_idx]
if (min1_slice['low'] <= stop_price).any():
# Find the first candle that triggered stop loss
stop_candle = min1_slice[min1_slice['low'] <= stop_price].iloc[0]
# Use open price if it gapped below stop, otherwise use stop price
if stop_candle['open'] < stop_price:
sell_price = stop_candle['open']
else:
sell_price = stop_price
return True, sell_price
return False, None

View File

@ -0,0 +1,394 @@
"""
Strategy Manager
This module contains the StrategyManager class that orchestrates multiple trading strategies
and combines their signals using configurable aggregation rules.
The StrategyManager supports various combination methods for entry and exit signals:
- Entry: any, all, majority, weighted_consensus
- Exit: any, all, priority (with stop loss prioritization)
"""
from typing import Dict, List, Tuple, Optional
import logging
from .base import StrategyBase, StrategySignal
from .default_strategy import DefaultStrategy
from .bbrs_strategy import BBRSStrategy
class StrategyManager:
"""
Manages multiple strategies and combines their signals.
The StrategyManager loads multiple strategies from configuration,
initializes them with backtester data, and combines their signals
using configurable aggregation rules.
Attributes:
strategies (List[StrategyBase]): List of loaded strategies
combination_rules (Dict): Rules for combining signals
initialized (bool): Whether manager has been initialized
Example:
config = {
"strategies": [
{"name": "default", "weight": 0.6, "params": {}},
{"name": "bbrs", "weight": 0.4, "params": {"bb_width": 0.05}}
],
"combination_rules": {
"entry": "weighted_consensus",
"exit": "any",
"min_confidence": 0.6
}
}
manager = StrategyManager(config["strategies"], config["combination_rules"])
"""
def __init__(self, strategies_config: List[Dict], combination_rules: Optional[Dict] = None):
"""
Initialize the strategy manager.
Args:
strategies_config: List of strategy configurations
combination_rules: Rules for combining signals
"""
self.strategies = self._load_strategies(strategies_config)
self.combination_rules = combination_rules or {
"entry": "weighted_consensus",
"exit": "any",
"min_confidence": 0.5
}
self.initialized = False
def _load_strategies(self, strategies_config: List[Dict]) -> List[StrategyBase]:
"""
Load strategies from configuration.
Creates strategy instances based on configuration and registers
them with the manager. Supports extensible strategy registration.
Args:
strategies_config: List of strategy configurations
Returns:
List[StrategyBase]: List of instantiated strategies
Raises:
ValueError: If unknown strategy name is specified
"""
strategies = []
for config in strategies_config:
name = config.get("name", "").lower()
weight = config.get("weight", 1.0)
params = config.get("params", {})
if name == "default":
strategies.append(DefaultStrategy(weight, params))
elif name == "bbrs":
strategies.append(BBRSStrategy(weight, params))
else:
raise ValueError(f"Unknown strategy: {name}. "
f"Available strategies: default, bbrs")
return strategies
def initialize(self, backtester) -> None:
"""
Initialize all strategies with backtester data.
Calls the initialize method on each strategy, allowing them
to set up indicators, validate data, and prepare for trading.
Each strategy will handle its own timeframe resampling.
Args:
backtester: Backtest instance with OHLCV data
"""
for strategy in self.strategies:
try:
strategy.initialize(backtester)
# Log strategy timeframe information
timeframes = strategy.get_timeframes()
logging.info(f"Initialized strategy: {strategy.name} with timeframes: {timeframes}")
except Exception as e:
logging.error(f"Failed to initialize strategy {strategy.name}: {e}")
raise
self.initialized = True
logging.info(f"Strategy manager initialized with {len(self.strategies)} strategies")
# Log summary of all timeframes being used
all_timeframes = set()
for strategy in self.strategies:
all_timeframes.update(strategy.get_timeframes())
logging.info(f"Total unique timeframes in use: {sorted(all_timeframes)}")
def get_entry_signal(self, backtester, df_index: int) -> bool:
"""
Get combined entry signal from all strategies.
Collects entry signals from all strategies and combines them
according to the configured combination rules.
Args:
backtester: Backtest instance with current state
df_index: Current index in the dataframe
Returns:
bool: True if combined signal suggests entry, False otherwise
"""
if not self.initialized:
return False
# Collect signals from all strategies
signals = {}
for strategy in self.strategies:
try:
signal = strategy.get_entry_signal(backtester, df_index)
signals[strategy.name] = {
"signal": signal,
"weight": strategy.weight,
"confidence": signal.confidence
}
except Exception as e:
logging.warning(f"Strategy {strategy.name} entry signal failed: {e}")
signals[strategy.name] = {
"signal": StrategySignal("HOLD", 0.0),
"weight": strategy.weight,
"confidence": 0.0
}
return self._combine_entry_signals(signals)
def get_exit_signal(self, backtester, df_index: int) -> Tuple[Optional[str], Optional[float]]:
"""
Get combined exit signal from all strategies.
Collects exit signals from all strategies and combines them
according to the configured combination rules.
Args:
backtester: Backtest instance with current state
df_index: Current index in the dataframe
Returns:
Tuple[Optional[str], Optional[float]]: (exit_type, exit_price) or (None, None)
"""
if not self.initialized:
return None, None
# Collect signals from all strategies
signals = {}
for strategy in self.strategies:
try:
signal = strategy.get_exit_signal(backtester, df_index)
signals[strategy.name] = {
"signal": signal,
"weight": strategy.weight,
"confidence": signal.confidence
}
except Exception as e:
logging.warning(f"Strategy {strategy.name} exit signal failed: {e}")
signals[strategy.name] = {
"signal": StrategySignal("HOLD", 0.0),
"weight": strategy.weight,
"confidence": 0.0
}
return self._combine_exit_signals(signals)
def _combine_entry_signals(self, signals: Dict) -> bool:
"""
Combine entry signals based on combination rules.
Supports multiple combination methods:
- any: Enter if ANY strategy signals entry
- all: Enter only if ALL strategies signal entry
- majority: Enter if majority of strategies signal entry
- weighted_consensus: Enter based on weighted average confidence
Args:
signals: Dictionary of strategy signals with weights and confidence
Returns:
bool: Combined entry decision
"""
method = self.combination_rules.get("entry", "weighted_consensus")
min_confidence = self.combination_rules.get("min_confidence", 0.5)
# Filter for entry signals above minimum confidence
entry_signals = [
s for s in signals.values()
if s["signal"].signal_type == "ENTRY" and s["signal"].confidence >= min_confidence
]
if not entry_signals:
return False
if method == "any":
# Enter if any strategy signals entry
return len(entry_signals) > 0
elif method == "all":
# Enter only if all strategies signal entry
return len(entry_signals) == len(self.strategies)
elif method == "majority":
# Enter if majority of strategies signal entry
return len(entry_signals) > len(self.strategies) / 2
elif method == "weighted_consensus":
# Enter based on weighted average confidence
total_weight = sum(s["weight"] for s in entry_signals)
if total_weight == 0:
return False
weighted_confidence = sum(
s["signal"].confidence * s["weight"]
for s in entry_signals
) / total_weight
return weighted_confidence >= min_confidence
else:
logging.warning(f"Unknown entry combination method: {method}, using 'any'")
return len(entry_signals) > 0
def _combine_exit_signals(self, signals: Dict) -> Tuple[Optional[str], Optional[float]]:
"""
Combine exit signals based on combination rules.
Supports multiple combination methods:
- any: Exit if ANY strategy signals exit (recommended for risk management)
- all: Exit only if ALL strategies agree on exit
- priority: Exit based on priority order (STOP_LOSS > SELL_SIGNAL > others)
Args:
signals: Dictionary of strategy signals with weights and confidence
Returns:
Tuple[Optional[str], Optional[float]]: (exit_type, exit_price) or (None, None)
"""
method = self.combination_rules.get("exit", "any")
# Filter for exit signals
exit_signals = [
s for s in signals.values()
if s["signal"].signal_type == "EXIT"
]
if not exit_signals:
return None, None
if method == "any":
# Exit if any strategy signals exit (first one found)
for signal_data in exit_signals:
signal = signal_data["signal"]
exit_type = signal.metadata.get("type", "EXIT")
return exit_type, signal.price
elif method == "all":
# Exit only if all strategies agree on exit
if len(exit_signals) == len(self.strategies):
signal = exit_signals[0]["signal"]
exit_type = signal.metadata.get("type", "EXIT")
return exit_type, signal.price
elif method == "priority":
# Priority order: STOP_LOSS > SELL_SIGNAL > others
stop_loss_signals = [
s for s in exit_signals
if s["signal"].metadata.get("type") == "STOP_LOSS"
]
if stop_loss_signals:
signal = stop_loss_signals[0]["signal"]
return "STOP_LOSS", signal.price
sell_signals = [
s for s in exit_signals
if s["signal"].metadata.get("type") == "SELL_SIGNAL"
]
if sell_signals:
signal = sell_signals[0]["signal"]
return "SELL_SIGNAL", signal.price
# Return first available exit signal
signal = exit_signals[0]["signal"]
exit_type = signal.metadata.get("type", "EXIT")
return exit_type, signal.price
else:
logging.warning(f"Unknown exit combination method: {method}, using 'any'")
# Fallback to 'any' method
signal = exit_signals[0]["signal"]
exit_type = signal.metadata.get("type", "EXIT")
return exit_type, signal.price
return None, None
def get_strategy_summary(self) -> Dict:
"""
Get summary of loaded strategies and their configuration.
Returns:
Dict: Summary of strategies, weights, combination rules, and timeframes
"""
return {
"strategies": [
{
"name": strategy.name,
"weight": strategy.weight,
"params": strategy.params,
"timeframes": strategy.get_timeframes(),
"initialized": strategy.initialized
}
for strategy in self.strategies
],
"combination_rules": self.combination_rules,
"total_strategies": len(self.strategies),
"initialized": self.initialized,
"all_timeframes": list(set().union(*[strategy.get_timeframes() for strategy in self.strategies]))
}
def __repr__(self) -> str:
"""String representation of the strategy manager."""
strategy_names = [s.name for s in self.strategies]
return (f"StrategyManager(strategies={strategy_names}, "
f"initialized={self.initialized})")
def create_strategy_manager(config: Dict) -> StrategyManager:
"""
Factory function to create StrategyManager from configuration.
Provides a convenient way to create a StrategyManager instance
from a configuration dictionary.
Args:
config: Configuration dictionary with strategies and combination_rules
Returns:
StrategyManager: Configured strategy manager instance
Example:
config = {
"strategies": [
{"name": "default", "weight": 1.0, "params": {}}
],
"combination_rules": {
"entry": "any",
"exit": "any"
}
}
manager = create_strategy_manager(config)
"""
strategies_config = config.get("strategies", [])
combination_rules = config.get("combination_rules", {})
if not strategies_config:
raise ValueError("No strategies specified in configuration")
return StrategyManager(strategies_config, combination_rules)

View File

@ -1,98 +1,405 @@
# Trading Strategies (`cycles/Analysis/strategies.py`)
# Strategies Documentation
This document outlines the trading strategies implemented within the `Strategy` class. These strategies utilize technical indicators calculated by other classes in the `Analysis` module.
## Overview
## Class: `Strategy`
The Cycles framework implements advanced trading strategies with sophisticated timeframe management, signal processing, and multi-strategy combination capabilities. Each strategy can operate on its preferred timeframes while maintaining precise execution control.
Manages and executes different trading strategies.
## Architecture
### `__init__(self, config: dict = None, logging = None)`
### Strategy System Components
- **Description**: Initializes the Strategy class.
- **Parameters**:
- `config` (dict, optional): Configuration dictionary containing parameters for various indicators and strategy settings. Must be provided if strategies requiring config are used.
- `logging` (logging.Logger, optional): Logger object for outputting messages. Defaults to `None`.
1. **StrategyBase**: Abstract base class with timeframe management
2. **Individual Strategies**: DefaultStrategy, BBRSStrategy implementations
3. **StrategyManager**: Multi-strategy orchestration and signal combination
4. **Timeframe System**: Automatic data resampling and signal mapping
### `run(self, data: pd.DataFrame, strategy_name: str) -> pd.DataFrame`
### New Timeframe Management
- **Description**: Executes a specified trading strategy on the input data.
- **Parameters**:
- `data` (pd.DataFrame): Input DataFrame containing at least price data (e.g., 'close', 'volume'). Specific strategies might require other columns or will calculate them.
- `strategy_name` (str): The name of the strategy to run. Supported names include:
- `"MarketRegimeStrategy"`
- `"CryptoTradingStrategy"`
- `"no_strategy"` (or any other unrecognized name will default to this)
- **Returns**: `pd.DataFrame` - A DataFrame containing the original data augmented with indicator values, and `BuySignal` and `SellSignal` (boolean) columns specific to the executed strategy. The structure of the DataFrame (e.g., daily, 15-minute) depends on the strategy.
Each strategy now controls its own timeframe requirements:
### `no_strategy(self, data: pd.DataFrame) -> pd.DataFrame`
```python
class MyStrategy(StrategyBase):
def get_timeframes(self):
return ["15min", "1h"] # Strategy specifies needed timeframes
- **Description**: A default strategy that generates no trading signals. It can serve as a baseline or placeholder.
- **Parameters**:
- `data` (pd.DataFrame): Input data DataFrame.
- **Returns**: `pd.DataFrame` - The input DataFrame with `BuySignal` and `SellSignal` columns added, both containing all `False` values.
def initialize(self, backtester):
# Framework automatically resamples data
self._resample_data(backtester.original_df)
---
# Access resampled data
data_15m = self.get_data_for_timeframe("15min")
data_1h = self.get_data_for_timeframe("1h")
```
## Implemented Strategies
## Available Strategies
### 1. `MarketRegimeStrategy`
### 1. Default Strategy (Meta-Trend Analysis)
- **Description**: An adaptive strategy that combines Bollinger Bands and RSI, adjusting its parameters based on detected market regimes (trending vs. sideways). It operates on daily aggregated data (aggregation is performed internally).
- **Core Logic**:
- Calculates Bollinger Bands (using `BollingerBands` class) with adaptive standard deviation multipliers based on `MarketRegime` (derived from `BBWidth`).
- Calculates RSI (using `RSI` class).
- **Trending Market (Breakout Mode)**:
- Buy: Price < Lower Band RSI < 50 Volume Spike.
- Sell: Price > Upper Band ∧ RSI > 50 ∧ Volume Spike.
- **Sideways Market (Mean Reversion)**:
- Buy: Price ≤ Lower Band ∧ RSI ≤ 40.
- Sell: Price ≥ Upper Band ∧ RSI ≥ 60.
- **Squeeze Confirmation** (if `config["SqueezeStrategy"]` is `True`):
- Requires additional confirmation from RSI Bollinger Bands (calculated by `rsi_bollinger_confirmation` helper method).
- Sideways markets also check for volume contraction.
- **Key Configuration Parameters (from `config` dict)**:
- `bb_period`, `bb_width`
- `trending['bb_std_dev_multiplier']`, `trending['rsi_threshold']`
- `sideways['bb_std_dev_multiplier']`, `sideways['rsi_threshold']`
- `rsi_period`
- `SqueezeStrategy` (boolean)
- **Output DataFrame Columns (Daily)**: Includes input columns plus `SMA`, `UpperBand`, `LowerBand`, `BBWidth`, `MarketRegime`, `RSI`, `BuySignal`, `SellSignal`.
**Purpose**: Meta-trend analysis using multiple Supertrend indicators
#### `rsi_bollinger_confirmation(self, rsi: pd.Series, window: int = 14, std_mult: float = 1.5) -> tuple`
**Timeframe Behavior**:
- **Configurable Primary Timeframe**: Set via `params["timeframe"]` (default: "15min")
- **1-Minute Precision**: Always includes 1min data for precise stop-loss execution
- **Example Timeframes**: `["15min", "1min"]` or `["5min", "1min"]`
- **Description** (Helper for `MarketRegimeStrategy`): Calculates Bollinger Bands on RSI values for signal confirmation.
- **Parameters**:
- `rsi` (pd.Series): Series containing RSI values.
- `window` (int, optional): The period for the moving average. Defaults to 14.
- `std_mult` (float, optional): Standard deviation multiplier for bands. Defaults to 1.5.
- **Returns**: `tuple` - (oversold_condition, overbought_condition) as pandas Series (boolean).
**Configuration**:
```json
{
"name": "default",
"weight": 1.0,
"params": {
"timeframe": "15min", // Configurable: "5min", "15min", "1h", etc.
"stop_loss_pct": 0.03 // Stop loss percentage
}
}
```
### 2. `CryptoTradingStrategy`
**Algorithm**:
1. Calculate 3 Supertrend indicators with different parameters on primary timeframe
2. Determine meta-trend: all three must agree for directional signal
3. **Entry**: Meta-trend changes from != 1 to == 1 (all trends align upward)
4. **Exit**: Meta-trend changes to -1 (trend reversal) or stop-loss triggered
5. **Stop-Loss**: 1-minute precision using percentage-based threshold
- **Description**: A multi-timeframe strategy primarily designed for volatile assets like cryptocurrencies. It aggregates input data into 15-minute and 1-hour intervals for analysis.
- **Core Logic**:
- Aggregates data to 15-minute (`data_15m`) and 1-hour (`data_1h`) resolutions using `aggregate_to_minutes` and `aggregate_to_hourly` from `data_utils.py`.
- Calculates 15-minute Bollinger Bands (20-period, 2 std dev) and 15-minute EMA-smoothed RSI (14-period) using `BollingerBands.calculate_custom_bands` and `RSI.calculate_custom_rsi`.
- Calculates 1-hour Bollinger Bands (50-period, 1.8 std dev) using `BollingerBands.calculate_custom_bands`.
- **Signal Generation (on 15m timeframe)**:
- Buy Signal: Price ≤ Lower 15m Band ∧ Price ≤ Lower 1h Band ∧ RSI_15m < 35 Volume Confirmation.
- Sell Signal: Price ≥ Upper 15m Band ∧ Price ≥ Upper 1h Band ∧ RSI_15m > 65 ∧ Volume Confirmation.
- **Volume Confirmation**: Current 15m volume > 1.5 × 20-period MA of 15m volume.
- **Risk Management**: Calculates `StopLoss` and `TakeProfit` levels based on a simplified ATR (standard deviation of 15m close prices over the last 4 periods).
- Buy: SL = Price - 2 * ATR; TP = Price + 4 * ATR
- Sell: SL = Price + 2 * ATR; TP = Price - 4 * ATR
- **Key Configuration Parameters**: While this strategy uses fixed parameters for its core indicator calculations, the `config` object passed to the `Strategy` class might be used by helper functions or for future extensions (though not heavily used by the current `CryptoTradingStrategy` logic itself for primary indicator settings).
- **Output DataFrame Columns (15-minute)**: Includes resampled 15m OHLCV, plus `UpperBand_15m`, `SMA_15m`, `LowerBand_15m`, `RSI_15m`, `VolumeMA_15m`, `UpperBand_1h` (forward-filled), `LowerBand_1h` (forward-filled), `BuySignal`, `SellSignal`, `StopLoss`, `TakeProfit`.
**Strengths**:
- Robust trend following with multiple confirmations
- Configurable for different market timeframes
- Precise risk management
- Low false signals in trending markets
---
**Best Use Cases**:
- Medium to long-term trend following
- Markets with clear directional movements
- Risk-conscious trading with defined exits
## General Strategy Concepts (from previous high-level notes)
### 2. BBRS Strategy (Bollinger Bands + RSI)
While the specific implementations above have their own detailed logic, some general concepts that often inspire trading strategies include:
**Purpose**: Market regime-adaptive strategy combining Bollinger Bands and RSI
- **Adaptive Parameters**: Adjusting indicator settings (like Bollinger Band width or RSI thresholds) based on market conditions (e.g., trending vs. sideways).
- **Multi-Timeframe Analysis**: Confirming signals on one timeframe with trends or levels on another (e.g., 15-minute signals confirmed by 1-hour context).
- **Volume Confirmation**: Using volume spikes or contractions to validate price-based signals.
- **Volatility-Adjusted Risk Management**: Using measures like ATR (Average True Range) to set stop-loss and take-profit levels, or to size positions dynamically.
**Timeframe Behavior**:
- **1-Minute Input**: Strategy receives 1-minute data
- **Internal Resampling**: Underlying Strategy class handles resampling to 15min/1h
- **No Double-Resampling**: Avoids conflicts with existing resampling logic
- **Signal Mapping**: Results mapped back to 1-minute resolution
These concepts are partially reflected in the implemented strategies, particularly in `MarketRegimeStrategy` (adaptive parameters) and `CryptoTradingStrategy` (multi-timeframe, volume confirmation, ATR-based risk levels).
**Configuration**:
```json
{
"name": "bbrs",
"weight": 1.0,
"params": {
"bb_width": 0.05, // Bollinger Band width threshold
"bb_period": 20, // Bollinger Band period
"rsi_period": 14, // RSI calculation period
"trending_rsi_threshold": [30, 70], // RSI thresholds for trending market
"trending_bb_multiplier": 2.5, // BB multiplier for trending market
"sideways_rsi_threshold": [40, 60], // RSI thresholds for sideways market
"sideways_bb_multiplier": 1.8, // BB multiplier for sideways market
"strategy_name": "MarketRegimeStrategy", // Implementation variant
"SqueezeStrategy": true, // Enable squeeze detection
"stop_loss_pct": 0.05 // Stop loss percentage
}
}
```
**Algorithm**:
**MarketRegimeStrategy** (Primary Implementation):
1. **Market Regime Detection**: Determines if market is trending or sideways
2. **Adaptive Parameters**: Adjusts BB/RSI thresholds based on market regime
3. **Trending Market Entry**: Price < Lower Band RSI < 50 Volume Spike
4. **Sideways Market Entry**: Price ≤ Lower Band ∧ RSI ≤ 40
5. **Exit Conditions**: Opposite band touch, RSI reversal, or stop-loss
6. **Volume Confirmation**: Requires 1.5× average volume for trending signals
**CryptoTradingStrategy** (Alternative Implementation):
1. **Multi-Timeframe Analysis**: Combines 15-minute and 1-hour Bollinger Bands
2. **Entry**: Price ≤ both 15m & 1h lower bands + RSI < 35 + Volume surge
3. **Exit**: 2:1 risk-reward ratio with ATR-based stops
4. **Adaptive Volatility**: Uses ATR for dynamic stop-loss/take-profit
**Strengths**:
- Adapts to different market regimes
- Multiple timeframe confirmation (internal)
- Volume analysis for signal quality
- Sophisticated entry/exit conditions
**Best Use Cases**:
- Volatile cryptocurrency markets
- Markets with alternating trending/sideways periods
- Short to medium-term trading
## Strategy Combination
### Multi-Strategy Architecture
The StrategyManager allows combining multiple strategies with configurable rules:
```json
{
"strategies": [
{
"name": "default",
"weight": 0.6,
"params": {"timeframe": "15min"}
},
{
"name": "bbrs",
"weight": 0.4,
"params": {"strategy_name": "MarketRegimeStrategy"}
}
],
"combination_rules": {
"entry": "weighted_consensus",
"exit": "any",
"min_confidence": 0.6
}
}
```
### Signal Combination Methods
**Entry Combinations**:
- **`any`**: Enter if ANY strategy signals entry
- **`all`**: Enter only if ALL strategies signal entry
- **`majority`**: Enter if majority of strategies signal entry
- **`weighted_consensus`**: Enter based on weighted confidence average
**Exit Combinations**:
- **`any`**: Exit if ANY strategy signals exit (recommended for risk management)
- **`all`**: Exit only if ALL strategies agree
- **`priority`**: Prioritized exit (STOP_LOSS > SELL_SIGNAL > others)
## Performance Characteristics
### Default Strategy Performance
**Strengths**:
- **Trend Accuracy**: High accuracy in strong trending markets
- **Risk Management**: Defined stop-losses with 1-minute precision
- **Low Noise**: Multiple Supertrend confirmation reduces false signals
- **Adaptable**: Works across different timeframes
**Weaknesses**:
- **Sideways Markets**: May generate false signals in ranging markets
- **Lag**: Multiple confirmations can delay entry/exit signals
- **Whipsaws**: Vulnerable to rapid trend reversals
**Optimal Conditions**:
- Clear trending markets
- Medium to low volatility trending
- Sufficient data history for Supertrend calculation
### BBRS Strategy Performance
**Strengths**:
- **Market Adaptation**: Automatically adjusts to market regime
- **Volume Confirmation**: Reduces false signals with volume analysis
- **Multi-Timeframe**: Internal analysis across multiple timeframes
- **Volatility Handling**: Designed for cryptocurrency volatility
**Weaknesses**:
- **Complexity**: More parameters to optimize
- **Market Noise**: Can be sensitive to short-term noise
- **Volume Dependency**: Requires reliable volume data
**Optimal Conditions**:
- High-volume cryptocurrency markets
- Markets with clear regime shifts
- Sufficient data for regime detection
## Usage Examples
### Single Strategy Backtests
```bash
# Default strategy on 15-minute timeframe
uv run .\main.py .\configs\config_default.json
# Default strategy on 5-minute timeframe
uv run .\main.py .\configs\config_default_5min.json
# BBRS strategy with market regime detection
uv run .\main.py .\configs\config_bbrs.json
```
### Multi-Strategy Backtests
```bash
# Combined strategies with weighted consensus
uv run .\main.py .\configs\config_combined.json
```
### Custom Configurations
**Aggressive Default Strategy**:
```json
{
"name": "default",
"params": {
"timeframe": "5min", // Faster signals
"stop_loss_pct": 0.02 // Tighter stop-loss
}
}
```
**Conservative BBRS Strategy**:
```json
{
"name": "bbrs",
"params": {
"bb_width": 0.03, // Tighter BB width
"stop_loss_pct": 0.07, // Wider stop-loss
"SqueezeStrategy": false // Disable squeeze for simplicity
}
}
```
## Development Guidelines
### Creating New Strategies
1. **Inherit from StrategyBase**:
```python
from cycles.strategies.base import StrategyBase, StrategySignal
class NewStrategy(StrategyBase):
def __init__(self, weight=1.0, params=None):
super().__init__("new_strategy", weight, params)
```
2. **Specify Timeframes**:
```python
def get_timeframes(self):
return ["1h"] # Specify required timeframes
```
3. **Implement Core Methods**:
```python
def initialize(self, backtester):
self._resample_data(backtester.original_df)
# Calculate indicators...
self.initialized = True
def get_entry_signal(self, backtester, df_index):
# Entry logic...
return StrategySignal("ENTRY", confidence=0.8)
def get_exit_signal(self, backtester, df_index):
# Exit logic...
return StrategySignal("EXIT", confidence=1.0)
```
4. **Register Strategy**:
```python
# In StrategyManager._load_strategies()
elif name == "new_strategy":
strategies.append(NewStrategy(weight, params))
```
### Timeframe Best Practices
1. **Minimize Timeframe Requirements**:
```python
def get_timeframes(self):
return ["15min"] # Only what's needed
```
2. **Include 1min for Stop-Loss**:
```python
def get_timeframes(self):
primary_tf = self.params.get("timeframe", "15min")
timeframes = [primary_tf]
if "1min" not in timeframes:
timeframes.append("1min")
return timeframes
```
3. **Handle Multi-Timeframe Synchronization**:
```python
def get_entry_signal(self, backtester, df_index):
# Get current timestamp from primary timeframe
primary_data = self.get_primary_timeframe_data()
current_time = primary_data.index[df_index]
# Map to other timeframes
hourly_data = self.get_data_for_timeframe("1h")
h1_idx = hourly_data.index.get_indexer([current_time], method='ffill')[0]
```
## Testing and Validation
### Strategy Testing Workflow
1. **Individual Strategy Testing**:
- Test each strategy independently
- Validate on different timeframes
- Check edge cases and data sufficiency
2. **Multi-Strategy Testing**:
- Test strategy combinations
- Validate combination rules
- Monitor for signal conflicts
3. **Timeframe Validation**:
- Ensure consistent behavior across timeframes
- Validate data alignment
- Check memory usage with large datasets
### Performance Monitoring
```python
# Get strategy summary
summary = strategy_manager.get_strategy_summary()
print(f"Strategies: {[s['name'] for s in summary['strategies']]}")
print(f"Timeframes: {summary['all_timeframes']}")
# Monitor individual strategy performance
for strategy in strategy_manager.strategies:
print(f"{strategy.name}: {strategy.get_timeframes()}")
```
## Advanced Topics
### Multi-Timeframe Strategy Development
For strategies requiring multiple timeframes:
```python
class MultiTimeframeStrategy(StrategyBase):
def get_timeframes(self):
return ["5min", "15min", "1h"]
def get_entry_signal(self, backtester, df_index):
# Analyze multiple timeframes
data_5m = self.get_data_for_timeframe("5min")
data_15m = self.get_data_for_timeframe("15min")
data_1h = self.get_data_for_timeframe("1h")
# Synchronize across timeframes
current_time = data_5m.index[df_index]
idx_15m = data_15m.index.get_indexer([current_time], method='ffill')[0]
idx_1h = data_1h.index.get_indexer([current_time], method='ffill')[0]
# Multi-timeframe logic
short_signal = self._analyze_5min(data_5m, df_index)
medium_signal = self._analyze_15min(data_15m, idx_15m)
long_signal = self._analyze_1h(data_1h, idx_1h)
# Combine signals with appropriate confidence
if short_signal and medium_signal and long_signal:
return StrategySignal("ENTRY", confidence=0.9)
elif short_signal and medium_signal:
return StrategySignal("ENTRY", confidence=0.7)
else:
return StrategySignal("HOLD", confidence=0.0)
```
### Strategy Optimization
1. **Parameter Optimization**: Systematic testing of strategy parameters
2. **Timeframe Optimization**: Finding optimal timeframes for each strategy
3. **Combination Optimization**: Optimizing weights and combination rules
4. **Market Regime Adaptation**: Adapting strategies to different market conditions
For detailed timeframe system documentation, see [Timeframe System](./timeframe_system.md).

390
docs/strategy_manager.md Normal file
View File

@ -0,0 +1,390 @@
# Strategy Manager Documentation
## Overview
The Strategy Manager is a sophisticated orchestration system that enables the combination of multiple trading strategies with configurable signal aggregation rules. It supports multi-timeframe analysis, weighted consensus voting, and flexible signal combination methods.
## Architecture
### Core Components
1. **StrategyBase**: Abstract base class defining the strategy interface
2. **StrategySignal**: Encapsulates trading signals with confidence levels
3. **StrategyManager**: Orchestrates multiple strategies and combines signals
4. **Strategy Implementations**: DefaultStrategy, BBRSStrategy, etc.
### New Timeframe System
The framework now supports strategy-level timeframe management:
- **Strategy-Controlled Timeframes**: Each strategy specifies its required timeframes
- **Automatic Data Resampling**: Framework automatically resamples 1-minute data to strategy needs
- **Multi-Timeframe Support**: Strategies can use multiple timeframes simultaneously
- **Precision Stop-Loss**: All strategies maintain 1-minute data for precise execution
```python
class MyStrategy(StrategyBase):
def get_timeframes(self):
return ["15min", "1h"] # Strategy needs both timeframes
def initialize(self, backtester):
# Access resampled data
data_15m = self.get_data_for_timeframe("15min")
data_1h = self.get_data_for_timeframe("1h")
# Setup indicators...
```
## Strategy Interface
### StrategyBase Class
All strategies must inherit from `StrategyBase` and implement:
```python
from cycles.strategies.base import StrategyBase, StrategySignal
class MyStrategy(StrategyBase):
def get_timeframes(self) -> List[str]:
"""Specify required timeframes"""
return ["15min"]
def initialize(self, backtester) -> None:
"""Setup strategy with data"""
self._resample_data(backtester.original_df)
# Calculate indicators...
self.initialized = True
def get_entry_signal(self, backtester, df_index: int) -> StrategySignal:
"""Generate entry signals"""
if condition_met:
return StrategySignal("ENTRY", confidence=0.8)
return StrategySignal("HOLD", confidence=0.0)
def get_exit_signal(self, backtester, df_index: int) -> StrategySignal:
"""Generate exit signals"""
if exit_condition:
return StrategySignal("EXIT", confidence=1.0,
metadata={"type": "SELL_SIGNAL"})
return StrategySignal("HOLD", confidence=0.0)
```
### StrategySignal Class
Encapsulates trading signals with metadata:
```python
# Entry signal with high confidence
entry_signal = StrategySignal("ENTRY", confidence=0.9)
# Exit signal with specific price
exit_signal = StrategySignal("EXIT", confidence=1.0, price=50000,
metadata={"type": "STOP_LOSS"})
# Hold signal
hold_signal = StrategySignal("HOLD", confidence=0.0)
```
## Available Strategies
### 1. Default Strategy
Meta-trend analysis using multiple Supertrend indicators.
**Features:**
- Uses 3 Supertrend indicators with different parameters
- Configurable timeframe (default: 15min)
- Entry when all trends align upward
- Exit on trend reversal or stop-loss
**Configuration:**
```json
{
"name": "default",
"weight": 1.0,
"params": {
"timeframe": "15min",
"stop_loss_pct": 0.03
}
}
```
**Timeframes:**
- Primary: Configurable (default 15min)
- Stop-loss: Always includes 1min for precision
### 2. BBRS Strategy
Bollinger Bands + RSI with market regime detection.
**Features:**
- Market regime detection (trending vs sideways)
- Adaptive parameters based on market conditions
- Volume analysis and confirmation
- Multi-timeframe internal analysis (1min → 15min/1h)
**Configuration:**
```json
{
"name": "bbrs",
"weight": 1.0,
"params": {
"bb_width": 0.05,
"bb_period": 20,
"rsi_period": 14,
"strategy_name": "MarketRegimeStrategy",
"stop_loss_pct": 0.05
}
}
```
**Timeframes:**
- Input: 1min (Strategy class handles internal resampling)
- Internal: 15min, 1h (handled by underlying Strategy class)
- Output: Mapped back to 1min for backtesting
## Signal Combination
### Entry Signal Combination
```python
combination_rules = {
"entry": "weighted_consensus", # or "any", "all", "majority"
"min_confidence": 0.6
}
```
**Methods:**
- **`any`**: Enter if ANY strategy signals entry
- **`all`**: Enter only if ALL strategies signal entry
- **`majority`**: Enter if majority of strategies signal entry
- **`weighted_consensus`**: Enter based on weighted average confidence
### Exit Signal Combination
```python
combination_rules = {
"exit": "priority" # or "any", "all"
}
```
**Methods:**
- **`any`**: Exit if ANY strategy signals exit (recommended for risk management)
- **`all`**: Exit only if ALL strategies agree
- **`priority`**: Prioritized exit (STOP_LOSS > SELL_SIGNAL > others)
## Configuration
### Basic Strategy Manager Setup
```json
{
"strategies": [
{
"name": "default",
"weight": 0.6,
"params": {
"timeframe": "15min",
"stop_loss_pct": 0.03
}
},
{
"name": "bbrs",
"weight": 0.4,
"params": {
"bb_width": 0.05,
"strategy_name": "MarketRegimeStrategy"
}
}
],
"combination_rules": {
"entry": "weighted_consensus",
"exit": "any",
"min_confidence": 0.5
}
}
```
### Timeframe Examples
**Single Timeframe Strategy:**
```json
{
"name": "default",
"params": {
"timeframe": "5min" # Strategy works on 5-minute data
}
}
```
**Multi-Timeframe Strategy (Future Enhancement):**
```json
{
"name": "multi_tf_strategy",
"params": {
"timeframes": ["5min", "15min", "1h"], # Multiple timeframes
"primary_timeframe": "15min"
}
}
```
## Usage Examples
### Create Strategy Manager
```python
from cycles.strategies import create_strategy_manager
config = {
"strategies": [
{"name": "default", "weight": 1.0, "params": {"timeframe": "15min"}}
],
"combination_rules": {
"entry": "any",
"exit": "any"
}
}
strategy_manager = create_strategy_manager(config)
```
### Initialize and Use
```python
# Initialize with backtester
strategy_manager.initialize(backtester)
# Get signals during backtesting
entry_signal = strategy_manager.get_entry_signal(backtester, df_index)
exit_signal, exit_price = strategy_manager.get_exit_signal(backtester, df_index)
# Get strategy summary
summary = strategy_manager.get_strategy_summary()
print(f"Loaded strategies: {[s['name'] for s in summary['strategies']]}")
print(f"All timeframes: {summary['all_timeframes']}")
```
## Extending the System
### Adding New Strategies
1. **Create Strategy Class:**
```python
class NewStrategy(StrategyBase):
def get_timeframes(self):
return ["1h"] # Specify required timeframes
def initialize(self, backtester):
self._resample_data(backtester.original_df)
# Setup indicators...
self.initialized = True
def get_entry_signal(self, backtester, df_index):
# Implement entry logic
pass
def get_exit_signal(self, backtester, df_index):
# Implement exit logic
pass
```
2. **Register in StrategyManager:**
```python
# In StrategyManager._load_strategies()
elif name == "new_strategy":
strategies.append(NewStrategy(weight, params))
```
### Multi-Timeframe Strategy Development
For strategies requiring multiple timeframes:
```python
class MultiTimeframeStrategy(StrategyBase):
def get_timeframes(self):
return ["5min", "15min", "1h"]
def initialize(self, backtester):
self._resample_data(backtester.original_df)
# Access different timeframes
data_5m = self.get_data_for_timeframe("5min")
data_15m = self.get_data_for_timeframe("15min")
data_1h = self.get_data_for_timeframe("1h")
# Calculate indicators on each timeframe
# ...
def _calculate_signal_confidence(self, backtester, df_index):
# Analyze multiple timeframes for confidence
primary_signal = self._get_primary_signal(df_index)
confirmation = self._get_timeframe_confirmation(df_index)
return primary_signal * confirmation
```
## Performance Considerations
### Timeframe Management
- **Efficient Resampling**: Each strategy resamples data once during initialization
- **Memory Usage**: Only required timeframes are kept in memory
- **Signal Mapping**: Efficient mapping between timeframes using pandas reindex
### Strategy Combination
- **Lazy Evaluation**: Signals calculated only when needed
- **Error Handling**: Individual strategy failures don't crash the system
- **Logging**: Comprehensive logging for debugging and monitoring
## Best Practices
1. **Strategy Design:**
- Specify minimal required timeframes
- Include 1min for stop-loss precision
- Use confidence levels effectively
2. **Signal Combination:**
- Use `any` for exits (risk management)
- Use `weighted_consensus` for entries
- Set appropriate minimum confidence levels
3. **Error Handling:**
- Implement robust initialization checks
- Handle missing data gracefully
- Log strategy-specific warnings
4. **Testing:**
- Test strategies individually before combining
- Validate timeframe requirements
- Monitor memory usage with large datasets
## Troubleshooting
### Common Issues
1. **Timeframe Mismatches:**
- Ensure strategy specifies correct timeframes
- Check data availability for all timeframes
2. **Signal Conflicts:**
- Review combination rules
- Adjust confidence thresholds
- Monitor strategy weights
3. **Performance Issues:**
- Minimize timeframe requirements
- Optimize indicator calculations
- Use efficient pandas operations
### Debugging Tips
- Enable detailed logging: `logging.basicConfig(level=logging.DEBUG)`
- Use strategy summary: `manager.get_strategy_summary()`
- Test individual strategies before combining
- Monitor signal confidence levels
---
**Version**: 1.0.0
**Last Updated**: January 2025
**TCP Cycles Project**

488
docs/timeframe_system.md Normal file
View File

@ -0,0 +1,488 @@
# Timeframe System Documentation
## Overview
The Cycles framework features a sophisticated timeframe management system that allows strategies to operate on their preferred timeframes while maintaining precise execution control. This system supports both single-timeframe and multi-timeframe strategies with automatic data resampling and intelligent signal mapping.
## Architecture
### Core Concepts
1. **Strategy-Controlled Timeframes**: Each strategy specifies its required timeframes
2. **Automatic Resampling**: Framework resamples 1-minute data to strategy needs
3. **Precision Execution**: All strategies maintain 1-minute data for accurate stop-loss execution
4. **Signal Mapping**: Intelligent mapping between different timeframe resolutions
### Data Flow
```
Original 1min Data
Strategy.get_timeframes() → ["15min", "1h"]
Automatic Resampling
Strategy Logic (15min + 1h analysis)
Signal Generation
Map to Working Timeframe
Backtesting Engine
```
## Strategy Timeframe Interface
### StrategyBase Methods
All strategies inherit timeframe capabilities from `StrategyBase`:
```python
class MyStrategy(StrategyBase):
def get_timeframes(self) -> List[str]:
"""Specify required timeframes for this strategy"""
return ["15min", "1h"] # Strategy needs both timeframes
def initialize(self, backtester) -> None:
# Automatic resampling happens here
self._resample_data(backtester.original_df)
# Access resampled data
data_15m = self.get_data_for_timeframe("15min")
data_1h = self.get_data_for_timeframe("1h")
# Calculate indicators on each timeframe
self.indicators_15m = self._calculate_indicators(data_15m)
self.indicators_1h = self._calculate_indicators(data_1h)
self.initialized = True
```
### Data Access Methods
```python
# Get data for specific timeframe
data_15m = strategy.get_data_for_timeframe("15min")
# Get primary timeframe data (first in list)
primary_data = strategy.get_primary_timeframe_data()
# Check available timeframes
timeframes = strategy.get_timeframes()
```
## Supported Timeframes
### Standard Timeframes
- **`"1min"`**: 1-minute bars (original resolution)
- **`"5min"`**: 5-minute bars
- **`"15min"`**: 15-minute bars
- **`"30min"`**: 30-minute bars
- **`"1h"`**: 1-hour bars
- **`"4h"`**: 4-hour bars
- **`"1d"`**: Daily bars
### Custom Timeframes
Any pandas-compatible frequency string is supported:
- **`"2min"`**: 2-minute bars
- **`"10min"`**: 10-minute bars
- **`"2h"`**: 2-hour bars
- **`"12h"`**: 12-hour bars
## Strategy Examples
### Single Timeframe Strategy
```python
class SingleTimeframeStrategy(StrategyBase):
def get_timeframes(self):
return ["15min"] # Only needs 15-minute data
def initialize(self, backtester):
self._resample_data(backtester.original_df)
# Work with 15-minute data
data = self.get_primary_timeframe_data()
self.indicators = self._calculate_indicators(data)
self.initialized = True
def get_entry_signal(self, backtester, df_index):
# df_index refers to 15-minute data
if self.indicators['signal'][df_index]:
return StrategySignal("ENTRY", confidence=0.8)
return StrategySignal("HOLD", confidence=0.0)
```
### Multi-Timeframe Strategy
```python
class MultiTimeframeStrategy(StrategyBase):
def get_timeframes(self):
return ["15min", "1h", "4h"] # Multiple timeframes
def initialize(self, backtester):
self._resample_data(backtester.original_df)
# Access different timeframes
self.data_15m = self.get_data_for_timeframe("15min")
self.data_1h = self.get_data_for_timeframe("1h")
self.data_4h = self.get_data_for_timeframe("4h")
# Calculate indicators on each timeframe
self.trend_4h = self._calculate_trend(self.data_4h)
self.momentum_1h = self._calculate_momentum(self.data_1h)
self.entry_signals_15m = self._calculate_entries(self.data_15m)
self.initialized = True
def get_entry_signal(self, backtester, df_index):
# Primary timeframe is 15min (first in list)
# Map df_index to other timeframes for confirmation
# Get current 15min timestamp
current_time = self.data_15m.index[df_index]
# Find corresponding indices in other timeframes
h1_idx = self.data_1h.index.get_indexer([current_time], method='ffill')[0]
h4_idx = self.data_4h.index.get_indexer([current_time], method='ffill')[0]
# Multi-timeframe confirmation
trend_ok = self.trend_4h[h4_idx] > 0
momentum_ok = self.momentum_1h[h1_idx] > 0.5
entry_signal = self.entry_signals_15m[df_index]
if trend_ok and momentum_ok and entry_signal:
confidence = 0.9 # High confidence with all timeframes aligned
return StrategySignal("ENTRY", confidence=confidence)
return StrategySignal("HOLD", confidence=0.0)
```
### Configurable Timeframe Strategy
```python
class ConfigurableStrategy(StrategyBase):
def get_timeframes(self):
# Strategy timeframe configurable via parameters
primary_tf = self.params.get("timeframe", "15min")
return [primary_tf, "1min"] # Primary + 1min for stop-loss
def initialize(self, backtester):
self._resample_data(backtester.original_df)
primary_tf = self.get_timeframes()[0]
self.data = self.get_data_for_timeframe(primary_tf)
# Indicator parameters can also be timeframe-dependent
if primary_tf == "5min":
self.ma_period = 20
elif primary_tf == "15min":
self.ma_period = 14
else:
self.ma_period = 10
self.indicators = self._calculate_indicators(self.data)
self.initialized = True
```
## Built-in Strategy Timeframe Behavior
### Default Strategy
**Timeframes**: Configurable primary + 1min for stop-loss
```python
# Configuration
{
"name": "default",
"params": {
"timeframe": "5min" # Configurable timeframe
}
}
# Resulting timeframes: ["5min", "1min"]
```
**Features**:
- Supertrend analysis on configured timeframe
- 1-minute precision for stop-loss execution
- Optimized for 15-minute default, but works on any timeframe
### BBRS Strategy
**Timeframes**: 1min input (internal resampling)
```python
# Configuration
{
"name": "bbrs",
"params": {
"strategy_name": "MarketRegimeStrategy"
}
}
# Resulting timeframes: ["1min"]
```
**Features**:
- Uses 1-minute data as input
- Internal resampling to 15min/1h by Strategy class
- Signals mapped back to 1-minute resolution
- No double-resampling issues
## Advanced Features
### Timeframe Synchronization
When working with multiple timeframes, synchronization is crucial:
```python
def _get_synchronized_signals(self, df_index, primary_timeframe="15min"):
"""Get signals synchronized across timeframes"""
# Get timestamp from primary timeframe
primary_data = self.get_data_for_timeframe(primary_timeframe)
current_time = primary_data.index[df_index]
signals = {}
for tf in self.get_timeframes():
if tf == primary_timeframe:
signals[tf] = df_index
else:
# Find corresponding index in other timeframe
tf_data = self.get_data_for_timeframe(tf)
tf_idx = tf_data.index.get_indexer([current_time], method='ffill')[0]
signals[tf] = tf_idx
return signals
```
### Dynamic Timeframe Selection
Strategies can adapt timeframes based on market conditions:
```python
class AdaptiveStrategy(StrategyBase):
def get_timeframes(self):
# Fixed set of timeframes strategy might need
return ["5min", "15min", "1h"]
def _select_active_timeframe(self, market_volatility):
"""Select timeframe based on market conditions"""
if market_volatility > 0.8:
return "5min" # High volatility -> shorter timeframe
elif market_volatility > 0.4:
return "15min" # Medium volatility -> medium timeframe
else:
return "1h" # Low volatility -> longer timeframe
def get_entry_signal(self, backtester, df_index):
# Calculate market volatility
volatility = self._calculate_volatility(df_index)
# Select appropriate timeframe
active_tf = self._select_active_timeframe(volatility)
# Generate signal on selected timeframe
return self._generate_signal_for_timeframe(active_tf, df_index)
```
## Configuration Examples
### Single Timeframe Configuration
```json
{
"strategies": [
{
"name": "default",
"weight": 1.0,
"params": {
"timeframe": "15min",
"stop_loss_pct": 0.03
}
}
]
}
```
### Multi-Timeframe Configuration
```json
{
"strategies": [
{
"name": "multi_timeframe_strategy",
"weight": 1.0,
"params": {
"primary_timeframe": "15min",
"confirmation_timeframes": ["1h", "4h"],
"signal_timeframe": "5min"
}
}
]
}
```
### Mixed Strategy Configuration
```json
{
"strategies": [
{
"name": "default",
"weight": 0.6,
"params": {
"timeframe": "15min"
}
},
{
"name": "bbrs",
"weight": 0.4,
"params": {
"strategy_name": "MarketRegimeStrategy"
}
}
]
}
```
## Performance Considerations
### Memory Usage
- Only required timeframes are resampled and stored
- Original 1-minute data shared across all strategies
- Efficient pandas resampling with minimal memory overhead
### Processing Speed
- Resampling happens once during initialization
- No repeated resampling during backtesting
- Vectorized operations on pre-computed timeframes
### Data Alignment
- All timeframes aligned to original 1-minute timestamps
- Forward-fill resampling ensures data availability
- Intelligent handling of missing data points
## Best Practices
### 1. Minimize Timeframe Requirements
```python
# Good - minimal timeframes
def get_timeframes(self):
return ["15min"]
# Less optimal - unnecessary timeframes
def get_timeframes(self):
return ["1min", "5min", "15min", "1h", "4h", "1d"]
```
### 2. Use Appropriate Timeframes for Strategy Logic
```python
# Good - timeframe matches strategy logic
class TrendStrategy(StrategyBase):
def get_timeframes(self):
return ["1h"] # Trend analysis works well on hourly data
class ScalpingStrategy(StrategyBase):
def get_timeframes(self):
return ["1min", "5min"] # Scalping needs fine-grained data
```
### 3. Include 1min for Stop-Loss Precision
```python
def get_timeframes(self):
primary_tf = self.params.get("timeframe", "15min")
timeframes = [primary_tf]
# Always include 1min for precise stop-loss
if "1min" not in timeframes:
timeframes.append("1min")
return timeframes
```
### 4. Handle Timeframe Edge Cases
```python
def get_entry_signal(self, backtester, df_index):
# Check bounds for all timeframes
if df_index >= len(self.get_primary_timeframe_data()):
return StrategySignal("HOLD", confidence=0.0)
# Robust timeframe indexing
try:
signal = self._calculate_signal(df_index)
return signal
except IndexError:
return StrategySignal("HOLD", confidence=0.0)
```
## Troubleshooting
### Common Issues
1. **Index Out of Bounds**
```python
# Problem: Different timeframes have different lengths
# Solution: Always check bounds
if df_index < len(self.data_1h):
signal = self.data_1h[df_index]
```
2. **Timeframe Misalignment**
```python
# Problem: Assuming same index across timeframes
# Solution: Use timestamp-based alignment
current_time = primary_data.index[df_index]
h1_idx = hourly_data.index.get_indexer([current_time], method='ffill')[0]
```
3. **Memory Issues with Large Datasets**
```python
# Solution: Only include necessary timeframes
def get_timeframes(self):
# Return minimal set
return ["15min"] # Not ["1min", "5min", "15min", "1h"]
```
### Debugging Tips
```python
# Log timeframe information
def initialize(self, backtester):
self._resample_data(backtester.original_df)
for tf in self.get_timeframes():
data = self.get_data_for_timeframe(tf)
print(f"Timeframe {tf}: {len(data)} bars, "
f"from {data.index[0]} to {data.index[-1]}")
self.initialized = True
```
## Future Enhancements
### Planned Features
1. **Dynamic Timeframe Switching**: Strategies adapt timeframes based on market conditions
2. **Timeframe Confidence Weighting**: Different confidence levels per timeframe
3. **Cross-Timeframe Signal Validation**: Automatic signal confirmation across timeframes
4. **Optimized Memory Management**: Lazy loading and caching for large datasets
### Extension Points
The timeframe system is designed for easy extension:
- Custom resampling methods
- Alternative timeframe synchronization strategies
- Market-specific timeframe preferences
- Real-time timeframe adaptation

220
main.py
View File

@ -12,6 +12,8 @@ from cycles.utils.system import SystemUtils
from cycles.backtest import Backtest
from cycles.Analysis.supertrend import Supertrends
from cycles.charts import BacktestCharts
from cycles.Analysis.strategies import Strategy
from cycles.strategies import StrategyManager, create_strategy_manager
logging.basicConfig(
level=logging.INFO,
@ -22,80 +24,96 @@ logging.basicConfig(
]
)
def default_init_strategy(backtester: Backtest):
supertrends = Supertrends(backtester.df, verbose=False)
def strategy_manager_init(backtester: Backtest):
"""Strategy Manager initialization function"""
# This will be called by Backtest.__init__, but actual initialization
# happens in strategy_manager.initialize()
pass
supertrend_results_list = supertrends.calculate_supertrend_indicators()
trends = [st['results']['trend'] for st in supertrend_results_list]
trends_arr = np.stack(trends, axis=1)
meta_trend = np.where((trends_arr[:,0] == trends_arr[:,1]) & (trends_arr[:,1] == trends_arr[:,2]),
trends_arr[:,0], 0)
def strategy_manager_entry(backtester: Backtest, df_index: int):
"""Strategy Manager entry function"""
return backtester.strategy_manager.get_entry_signal(backtester, df_index)
backtester.strategies["meta_trend"] = meta_trend
def strategy_manager_exit(backtester: Backtest, df_index: int):
"""Strategy Manager exit function"""
return backtester.strategy_manager.get_exit_signal(backtester, df_index)
def default_entry_strategy(backtester: Backtest, df_index):
return backtester.strategies["meta_trend"][df_index - 1] != 1 and backtester.strategies["meta_trend"][df_index] == 1
def stop_loss_strategy(backtester: Backtest):
stop_price = backtester.entry_price * (1 - backtester.strategies["stop_loss_pct"])
min1_index = backtester.min1_df.index
start_candidates = min1_index[min1_index >= backtester.entry_time]
backtester.current_trade_min1_start_idx = start_candidates[0]
end_candidates = min1_index[min1_index <= backtester.current_date]
if len(end_candidates) == 0:
print("Warning: no end candidate here. Need to be checked")
return False, None
backtester.current_min1_end_idx = end_candidates[-1]
min1_slice = backtester.min1_df.loc[backtester.current_trade_min1_start_idx:backtester.current_min1_end_idx]
# print(f"lowest low in that range: {min1_slice['low'].min()}, count: {len(min1_slice)}")
# print(f"slice start: {min1_slice.index[0]}, slice end: {min1_slice.index[-1]}")
if (min1_slice['low'] <= stop_price).any():
stop_candle = min1_slice[min1_slice['low'] <= stop_price].iloc[0]
if stop_candle['open'] < stop_price:
sell_price = stop_candle['open']
else:
sell_price = stop_price
return True, sell_price
return False, None
def default_exit_strategy(backtester: Backtest, df_index):
if backtester.strategies["meta_trend"][df_index - 1] != 1 and \
backtester.strategies["meta_trend"][df_index] == -1:
return "META_TREND_EXIT_SIGNAL", None
stop_loss_result, sell_price = stop_loss_strategy(backtester)
if stop_loss_result:
backtester.strategies["current_trade_min1_start_idx"] = \
backtester.min1_df.index[backtester.min1_df.index <= backtester.current_date][-1]
return "STOP_LOSS", sell_price
return None, None
def process_timeframe_data(min1_df, df, stop_loss_pcts, rule_name, initial_usd, debug=False):
"""Process the entire timeframe with all stop loss values (no monthly split)"""
df = df.copy().reset_index(drop=True)
def process_timeframe_data(min1_df, df, stop_loss_pcts, rule_name, initial_usd, strategy_config=None, debug=False):
"""Process the entire timeframe with all stop loss values using Strategy Manager"""
results_rows = []
trade_rows = []
min1_df['timestamp'] = pd.to_datetime(min1_df.index) # need ?
for stop_loss_pct in stop_loss_pcts:
backtester = Backtest(initial_usd, df, min1_df, default_init_strategy)
backtester.strategies["stop_loss_pct"] = stop_loss_pct
# Create and initialize strategy manager
if strategy_config:
# Use provided strategy configuration
strategy_manager = create_strategy_manager(strategy_config)
else:
# Default to single default strategy for backward compatibility
default_strategy_config = {
"strategies": [
{
"name": "default",
"weight": 1.0,
"params": {"stop_loss_pct": stop_loss_pct}
}
],
"combination_rules": {
"entry": "any",
"exit": "any",
"min_confidence": 0.5
}
}
strategy_manager = create_strategy_manager(default_strategy_config)
# Inject stop_loss_pct into all strategy params if not present
for strategy in strategy_manager.strategies:
if "stop_loss_pct" not in strategy.params:
strategy.params["stop_loss_pct"] = stop_loss_pct
# Get the primary timeframe from the first strategy for backtester setup
primary_strategy = strategy_manager.strategies[0]
primary_timeframe = primary_strategy.get_timeframes()[0]
# For BBRS strategy, it works with 1-minute data directly and handles internal resampling
# For other strategies, use their preferred timeframe
if primary_strategy.name == "bbrs":
# BBRS strategy processes 1-minute data and outputs signals on its internal timeframes
# Use 1-minute data for backtester working dataframe
working_df = min1_df.copy()
else:
# Other strategies specify their preferred timeframe
# Create backtester working data from the primary strategy's primary timeframe
temp_backtester = type('temp', (), {})()
temp_backtester.original_df = min1_df
# Let the primary strategy resample the data to get the working dataframe
primary_strategy._resample_data(min1_df)
working_df = primary_strategy.get_primary_timeframe_data()
# Prepare working dataframe for backtester (ensure timestamp column)
working_df_for_backtest = working_df.copy().reset_index()
if 'index' in working_df_for_backtest.columns:
working_df_for_backtest = working_df_for_backtest.rename(columns={'index': 'timestamp'})
# Initialize backtest with strategy manager initialization
backtester = Backtest(initial_usd, working_df_for_backtest, working_df_for_backtest, strategy_manager_init)
# Store original min1_df for strategy processing
backtester.original_df = min1_df
# Attach strategy manager to backtester and initialize
backtester.strategy_manager = strategy_manager
strategy_manager.initialize(backtester)
# Run backtest with strategy manager functions
results = backtester.run(
default_entry_strategy,
default_exit_strategy,
strategy_manager_entry,
strategy_manager_exit,
debug
)
n_trades = results["n_trades"]
trades = results.get('trades', [])
wins = [1 for t in trades if t['exit'] is not None and t['exit'] > t['entry']]
@ -126,8 +144,9 @@ def process_timeframe_data(min1_df, df, stop_loss_pcts, rule_name, initial_usd,
total_fees_usd = sum(trade.get('fee_usd', 0.0) for trade in trades)
# Update row to include timeframe information
row = {
"timeframe": rule_name,
"timeframe": f"{rule_name}({primary_timeframe})", # Show actual timeframe used
"stop_loss_pct": stop_loss_pct,
"n_trades": n_trades,
"n_stop_loss": sum(1 for trade in trades if 'type' in trade and trade['type'] == 'STOP_LOSS'),
@ -145,7 +164,7 @@ def process_timeframe_data(min1_df, df, stop_loss_pcts, rule_name, initial_usd,
for trade in trades:
trade_rows.append({
"timeframe": rule_name,
"timeframe": f"{rule_name}({primary_timeframe})",
"stop_loss_pct": stop_loss_pct,
"entry_time": trade.get("entry_time"),
"exit_time": trade.get("exit_time"),
@ -155,34 +174,48 @@ def process_timeframe_data(min1_df, df, stop_loss_pcts, rule_name, initial_usd,
"type": trade.get("type"),
"fee_usd": trade.get("fee_usd"),
})
logging.info(f"Timeframe: {rule_name}, Stop Loss: {stop_loss_pct}, Trades: {n_trades}")
# Log strategy summary
strategy_summary = strategy_manager.get_strategy_summary()
logging.info(f"Timeframe: {rule_name}({primary_timeframe}), Stop Loss: {stop_loss_pct}, "
f"Trades: {n_trades}, Strategies: {[s['name'] for s in strategy_summary['strategies']]}")
if debug:
# Plot after each backtest run
try:
meta_trend = backtester.strategies["meta_trend"]
BacktestCharts.plot(df, meta_trend)
# Check if any strategy has processed_data for universal plotting
processed_data = None
for strategy in strategy_manager.strategies:
if hasattr(backtester, 'processed_data') and backtester.processed_data is not None:
processed_data = backtester.processed_data
break
if processed_data is not None and not processed_data.empty:
# Format strategy data with actual executed trades for universal plotting
formatted_data = BacktestCharts.format_strategy_data_with_trades(processed_data, results)
# Plot using universal function
BacktestCharts.plot_data(formatted_data)
else:
# Fallback to meta_trend plot if available
if "meta_trend" in backtester.strategies:
meta_trend = backtester.strategies["meta_trend"]
# Use the working dataframe for plotting
BacktestCharts.plot(working_df, meta_trend)
else:
print("No plotting data available")
except Exception as e:
print(f"Plotting failed: {e}")
return results_rows, trade_rows
def process(timeframe_info, debug=False):
"""Process a single (timeframe, stop_loss_pct) combination (no monthly split)"""
rule, data_1min, stop_loss_pct, initial_usd = timeframe_info
"""Process a single (timeframe, stop_loss_pct) combination with strategy config"""
rule, data_1min, stop_loss_pct, initial_usd, strategy_config = timeframe_info
if rule == "1min":
df = data_1min.copy()
else:
df = data_1min.resample(rule).agg({
'open': 'first',
'high': 'max',
'low': 'min',
'close': 'last',
'volume': 'sum'
}).dropna()
df = df.reset_index()
results_rows, all_trade_rows = process_timeframe_data(data_1min, df, [stop_loss_pct], rule, initial_usd, debug=debug)
# Pass the original 1-minute data - strategies will handle their own timeframe resampling
results_rows, all_trade_rows = process_timeframe_data(
data_1min, data_1min, [stop_loss_pct], rule, initial_usd, strategy_config, debug=debug
)
return results_rows, all_trade_rows
def aggregate_results(all_rows):
@ -241,11 +274,23 @@ if __name__ == "__main__":
# Default values (from config.json)
default_config = {
"start_date": "2025-05-01",
"start_date": "2025-03-01",
"stop_date": datetime.datetime.today().strftime('%Y-%m-%d'),
"initial_usd": 10000,
"timeframes": ["15min"],
"stop_loss_pcts": [0.03],
"strategies": [
{
"name": "default",
"weight": 1.0,
"params": {}
}
],
"combination_rules": {
"entry": "any",
"exit": "any",
"min_confidence": 0.5
}
}
if args.config:
@ -272,6 +317,8 @@ if __name__ == "__main__":
'initial_usd': initial_usd,
'timeframes': timeframes,
'stop_loss_pcts': stop_loss_pcts,
'strategies': default_config['strategies'],
'combination_rules': default_config['combination_rules']
}
else:
config = default_config
@ -282,6 +329,12 @@ if __name__ == "__main__":
timeframes = config['timeframes']
stop_loss_pcts = config['stop_loss_pcts']
# Extract strategy configuration
strategy_config = {
"strategies": config.get('strategies', default_config['strategies']),
"combination_rules": config.get('combination_rules', default_config['combination_rules'])
}
timestamp = datetime.datetime.now().strftime("%Y_%m_%d_%H_%M")
storage = Storage(logging=logging)
@ -298,8 +351,9 @@ if __name__ == "__main__":
f"Initial USD\t{initial_usd}"
]
# Create tasks for each (timeframe, stop_loss_pct) combination
tasks = [
(name, data_1min, stop_loss_pct, initial_usd)
(name, data_1min, stop_loss_pct, initial_usd, strategy_config)
for name in timeframes
for stop_loss_pct in stop_loss_pcts
]

View File

@ -2,6 +2,7 @@ import logging
import seaborn as sns
import matplotlib.pyplot as plt
import pandas as pd
import datetime
from cycles.utils.storage import Storage
from cycles.Analysis.strategies import Strategy
@ -16,8 +17,8 @@ logging.basicConfig(
)
config = {
"start_date": "2023-01-01",
"stop_date": "2024-01-01",
"start_date": "2025-03-01",
"stop_date": datetime.datetime.today().strftime('%Y-%m-%d'),
"data_file": "btcusd_1-min_data.csv"
}