Cycles/trend_detector_macd.py

260 lines
11 KiB
Python
Raw Normal View History

2025-05-06 15:24:36 +08:00
import pandas as pd
import numpy as np
import ta
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
import logging
import mplfinance as mpf
from matplotlib.patches import Rectangle
class TrendDetectorMACD:
def __init__(self, data, verbose=False):
self.data = data
self.verbose = verbose
# Configure logging
logging.basicConfig(level=logging.INFO if verbose else logging.WARNING,
format='%(asctime)s - %(levelname)s - %(message)s')
self.logger = logging.getLogger('TrendDetector')
# Convert data to pandas DataFrame if it's not already
if not isinstance(self.data, pd.DataFrame):
if isinstance(self.data, list):
self.logger.info("Converting list to DataFrame")
self.data = pd.DataFrame({'close': self.data})
else:
self.logger.error("Invalid data format provided")
raise ValueError("Data must be a pandas DataFrame or a list")
self.logger.info(f"Initialized TrendDetector with {len(self.data)} data points")
def detect_trends_MACD_signal(self):
self.logger.info("Starting trend detection")
if len(self.data) < 3:
self.logger.warning("Not enough data points for trend detection")
return {"error": "Not enough data points for trend detection"}
# Create a copy of the DataFrame to avoid modifying the original
df = self.data.copy()
self.logger.info("Created copy of input data")
# If 'close' column doesn't exist, try to use a relevant column
if 'close' not in df.columns and len(df.columns) > 0:
self.logger.info(f"'close' column not found, using {df.columns[0]} instead")
df['close'] = df[df.columns[0]] # Use the first column as 'close'
# Add trend indicators
self.logger.info("Calculating MACD indicators")
# Moving Average Convergence Divergence (MACD)
df['macd'] = ta.trend.macd(df['close'])
df['macd_signal'] = ta.trend.macd_signal(df['close'])
df['macd_diff'] = ta.trend.macd_diff(df['close'])
# Directional Movement Index (DMI)
if all(col in df.columns for col in ['high', 'low', 'close']):
self.logger.info("Calculating ADX indicators")
df['adx'] = ta.trend.adx(df['high'], df['low'], df['close'])
df['adx_pos'] = ta.trend.adx_pos(df['high'], df['low'], df['close'])
df['adx_neg'] = ta.trend.adx_neg(df['high'], df['low'], df['close'])
# Identify trend changes
self.logger.info("Identifying trend changes")
df['trend'] = np.where(df['macd'] > df['macd_signal'], 'up', 'down')
df['trend_change'] = df['trend'] != df['trend'].shift(1)
# Generate trend segments
self.logger.info("Generating trend segments")
trends = []
trend_start = 0
for i in range(1, len(df)):
if df['trend_change'].iloc[i]:
if i > trend_start:
trends.append({
"type": df['trend'].iloc[i-1],
"start_index": trend_start,
"end_index": i-1,
"start_value": df['close'].iloc[trend_start],
"end_value": df['close'].iloc[i-1]
})
trend_start = i
# Add the last trend
if trend_start < len(df):
trends.append({
"type": df['trend'].iloc[-1],
"start_index": trend_start,
"end_index": len(df)-1,
"start_value": df['close'].iloc[trend_start],
"end_value": df['close'].iloc[-1]
})
self.logger.info(f"Detected {len(trends)} trend segments")
return trends
def get_strongest_trend(self):
self.logger.info("Finding strongest trend")
trends = self.detect_trends_MACD_signal()
if isinstance(trends, dict) and "error" in trends:
self.logger.warning(f"Error in trend detection: {trends['error']}")
return trends
if not trends:
self.logger.info("No significant trends detected")
return {"message": "No significant trends detected"}
strongest = max(trends, key=lambda x: abs(x["end_value"] - x["start_value"]))
self.logger.info(f"Strongest trend: {strongest['type']} from index {strongest['start_index']} to {strongest['end_index']}")
return strongest
def plot_trends(self, trends):
"""
Plot price data with identified trends highlighted using candlestick charts.
"""
self.logger.info("Plotting trends with candlesticks")
if isinstance(trends, dict) and "error" in trends:
self.logger.error(trends["error"])
print(trends["error"])
return
if not trends:
self.logger.warning("No significant trends detected for plotting")
print("No significant trends detected")
return
# Create a figure with 2 subplots that share the x-axis
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(14, 8), gridspec_kw={'height_ratios': [2, 1]}, sharex=True)
self.logger.info("Creating plot figure with shared x-axis")
# Prepare data for candlestick chart
df = self.data.copy()
# Ensure required columns exist for candlestick
required_cols = ['open', 'high', 'low', 'close']
if not all(col in df.columns for col in required_cols):
self.logger.warning("Missing required columns for candlestick. Defaulting to line chart.")
if 'close' in df.columns:
ax1.plot(df.index if 'datetime' not in df.columns else df['datetime'],
df['close'], color='black', alpha=0.7, linewidth=1, label='Price')
else:
ax1.plot(df.index if 'datetime' not in df.columns else df['datetime'],
df[df.columns[0]], color='black', alpha=0.7, linewidth=1, label='Price')
else:
# Get x values (dates if available, otherwise indices)
if 'datetime' in df.columns:
x_label = 'Date'
# Format date axis
ax1.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d'))
ax2.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d'))
fig.autofmt_xdate()
self.logger.info("Using datetime for x-axis")
# For candlestick, ensure datetime is the index
if df.index.name != 'datetime':
df = df.set_index('datetime')
else:
x_label = 'Index'
self.logger.info("Using index for x-axis")
# Plot candlestick chart
up_color = 'green'
down_color = 'red'
# Draw candlesticks manually
width = 0.6
for i in range(len(df)):
# Get OHLC values for this candle
open_val = df['open'].iloc[i]
close_val = df['close'].iloc[i]
high_val = df['high'].iloc[i]
low_val = df['low'].iloc[i]
idx = df.index[i]
# Determine candle color
color = up_color if close_val >= open_val else down_color
# Plot candle body
body_height = abs(close_val - open_val)
bottom = min(open_val, close_val)
rect = Rectangle((i - width/2, bottom), width, body_height, color=color, alpha=0.8)
ax1.add_patch(rect)
# Plot candle wicks
ax1.plot([i, i], [low_val, high_val], color='black', linewidth=1)
# Set appropriate x-axis limits
ax1.set_xlim(-0.5, len(df) - 0.5)
# Highlight each trend with a different color
self.logger.info("Highlighting trends on plot")
for trend in trends:
start_idx = trend['start_index']
end_idx = trend['end_index']
trend_type = trend['type']
# Get x-coordinates for trend plotting
x_start = start_idx
x_end = end_idx
# Get y-coordinates for trend line
if 'close' in df.columns:
y_start = df['close'].iloc[start_idx]
y_end = df['close'].iloc[end_idx]
else:
y_start = df[df.columns[0]].iloc[start_idx]
y_end = df[df.columns[0]].iloc[end_idx]
# Choose color based on trend type
color = 'green' if trend_type == 'up' else 'red'
# Plot trend line
ax1.plot([x_start, x_end], [y_start, y_end], color=color, linewidth=2,
label=f"{trend_type.capitalize()} Trend" if f"{trend_type.capitalize()} Trend" not in ax1.get_legend_handles_labels()[1] else "")
# Add markers at start and end points
ax1.scatter(x_start, y_start, color=color, marker='o', s=50)
ax1.scatter(x_end, y_end, color=color, marker='s', s=50)
# Configure first subplot
ax1.set_title('Price with Trends (Candlestick)', fontsize=16)
ax1.set_ylabel('Price', fontsize=14)
ax1.grid(alpha=0.3)
ax1.legend()
# Create MACD in second subplot
self.logger.info("Creating MACD subplot")
# Calculate MACD indicators if not already present
if 'macd' not in df.columns:
if 'close' not in df.columns and len(df.columns) > 0:
df['close'] = df[df.columns[0]]
df['macd'] = ta.trend.macd(df['close'])
df['macd_signal'] = ta.trend.macd_signal(df['close'])
df['macd_diff'] = ta.trend.macd_diff(df['close'])
# Plot MACD components on second subplot
x_indices = np.arange(len(df))
ax2.plot(x_indices, df['macd'], label='MACD', color='blue')
ax2.plot(x_indices, df['macd_signal'], label='Signal', color='orange')
# Plot MACD histogram
for i in range(len(df)):
if df['macd_diff'].iloc[i] >= 0:
ax2.bar(i, df['macd_diff'].iloc[i], color='green', alpha=0.5, width=0.8)
else:
ax2.bar(i, df['macd_diff'].iloc[i], color='red', alpha=0.5, width=0.8)
ax2.set_title('MACD Indicator', fontsize=16)
ax2.set_xlabel(x_label, fontsize=14)
ax2.set_ylabel('MACD', fontsize=14)
ax2.grid(alpha=0.3)
ax2.legend()
# Enable synchronized zooming
plt.tight_layout()
plt.subplots_adjust(hspace=0.1)
plt.show()
return plt