2025-05-23 17:06:35 +08:00
# Strategies Documentation
## Overview
The Cycles framework implements advanced trading strategies with sophisticated timeframe management, signal processing, and multi-strategy combination capabilities. Each strategy can operate on its preferred timeframes while maintaining precise execution control.
## Architecture
### Strategy System Components
1. **StrategyBase** : Abstract base class with timeframe management
2. **Individual Strategies** : DefaultStrategy, BBRSStrategy implementations
3. **StrategyManager** : Multi-strategy orchestration and signal combination
4. **Timeframe System** : Automatic data resampling and signal mapping
### New Timeframe Management
Each strategy now controls its own timeframe requirements:
```python
class MyStrategy(StrategyBase):
def get_timeframes(self):
return ["15min", "1h"] # Strategy specifies needed timeframes
def initialize(self, backtester):
# Framework automatically resamples data
self._resample_data(backtester.original_df)
# Access resampled data
data_15m = self.get_data_for_timeframe("15min")
data_1h = self.get_data_for_timeframe("1h")
```
## Available Strategies
### 1. Default Strategy (Meta-Trend Analysis)
**Purpose**: Meta-trend analysis using multiple Supertrend indicators
**Timeframe Behavior**:
- **Configurable Primary Timeframe**: Set via `params["timeframe"]` (default: "15min")
- **1-Minute Precision**: Always includes 1min data for precise stop-loss execution
- **Example Timeframes**: `["15min", "1min"]` or `["5min", "1min"]`
**Configuration**:
```json
{
"name": "default",
"weight": 1.0,
"params": {
"timeframe": "15min", // Configurable: "5min", "15min", "1h", etc.
"stop_loss_pct": 0.03 // Stop loss percentage
}
}
```
**Algorithm**:
1. Calculate 3 Supertrend indicators with different parameters on primary timeframe
2. Determine meta-trend: all three must agree for directional signal
3. **Entry** : Meta-trend changes from != 1 to == 1 (all trends align upward)
4. **Exit** : Meta-trend changes to -1 (trend reversal) or stop-loss triggered
5. **Stop-Loss** : 1-minute precision using percentage-based threshold
**Strengths**:
- Robust trend following with multiple confirmations
- Configurable for different market timeframes
- Precise risk management
- Low false signals in trending markets
**Best Use Cases**:
- Medium to long-term trend following
- Markets with clear directional movements
- Risk-conscious trading with defined exits
### 2. BBRS Strategy (Bollinger Bands + RSI)
**Purpose**: Market regime-adaptive strategy combining Bollinger Bands and RSI
**Timeframe Behavior**:
- **1-Minute Input**: Strategy receives 1-minute data
- **Internal Resampling**: Underlying Strategy class handles resampling to 15min/1h
- **No Double-Resampling**: Avoids conflicts with existing resampling logic
- **Signal Mapping**: Results mapped back to 1-minute resolution
**Configuration**:
```json
{
"name": "bbrs",
"weight": 1.0,
"params": {
"bb_width": 0.05, // Bollinger Band width threshold
"bb_period": 20, // Bollinger Band period
"rsi_period": 14, // RSI calculation period
"trending_rsi_threshold": [30, 70], // RSI thresholds for trending market
"trending_bb_multiplier": 2.5, // BB multiplier for trending market
"sideways_rsi_threshold": [40, 60], // RSI thresholds for sideways market
"sideways_bb_multiplier": 1.8, // BB multiplier for sideways market
"strategy_name": "MarketRegimeStrategy", // Implementation variant
"SqueezeStrategy": true, // Enable squeeze detection
"stop_loss_pct": 0.05 // Stop loss percentage
}
}
```
**Algorithm**:
**MarketRegimeStrategy** (Primary Implementation):
1. **Market Regime Detection** : Determines if market is trending or sideways
2. **Adaptive Parameters** : Adjusts BB/RSI thresholds based on market regime
3. **Trending Market Entry** : Price < Lower Band ∧ RSI < 50 ∧ Volume Spike
4. **Sideways Market Entry** : Price ≤ Lower Band ∧ RSI ≤ 40
5. **Exit Conditions** : Opposite band touch, RSI reversal, or stop-loss
6. **Volume Confirmation** : Requires 1.5× average volume for trending signals
**CryptoTradingStrategy** (Alternative Implementation):
1. **Multi-Timeframe Analysis** : Combines 15-minute and 1-hour Bollinger Bands
2. **Entry** : Price ≤ both 15m & 1h lower bands + RSI < 35 + Volume surge
3. **Exit** : 2:1 risk-reward ratio with ATR-based stops
4. **Adaptive Volatility** : Uses ATR for dynamic stop-loss/take-profit
**Strengths**:
- Adapts to different market regimes
- Multiple timeframe confirmation (internal)
- Volume analysis for signal quality
- Sophisticated entry/exit conditions
**Best Use Cases**:
- Volatile cryptocurrency markets
- Markets with alternating trending/sideways periods
- Short to medium-term trading
## Strategy Combination
### Multi-Strategy Architecture
The StrategyManager allows combining multiple strategies with configurable rules:
```json
{
"strategies": [
{
"name": "default",
"weight": 0.6,
"params": {"timeframe": "15min"}
},
{
"name": "bbrs",
"weight": 0.4,
"params": {"strategy_name": "MarketRegimeStrategy"}
}
],
"combination_rules": {
"entry": "weighted_consensus",
"exit": "any",
"min_confidence": 0.6
}
}
```
### Signal Combination Methods
**Entry Combinations**:
- **`any` **: Enter if ANY strategy signals entry
- **`all` **: Enter only if ALL strategies signal entry
- **`majority` **: Enter if majority of strategies signal entry
- **`weighted_consensus` **: Enter based on weighted confidence average
**Exit Combinations**:
- **`any` **: Exit if ANY strategy signals exit (recommended for risk management)
- **`all` **: Exit only if ALL strategies agree
- **`priority` **: Prioritized exit (STOP_LOSS > SELL_SIGNAL > others)
## Performance Characteristics
### Default Strategy Performance
**Strengths**:
- **Trend Accuracy**: High accuracy in strong trending markets
- **Risk Management**: Defined stop-losses with 1-minute precision
- **Low Noise**: Multiple Supertrend confirmation reduces false signals
- **Adaptable**: Works across different timeframes
**Weaknesses**:
- **Sideways Markets**: May generate false signals in ranging markets
- **Lag**: Multiple confirmations can delay entry/exit signals
- **Whipsaws**: Vulnerable to rapid trend reversals
**Optimal Conditions**:
- Clear trending markets
- Medium to low volatility trending
- Sufficient data history for Supertrend calculation
### BBRS Strategy Performance
**Strengths**:
- **Market Adaptation**: Automatically adjusts to market regime
- **Volume Confirmation**: Reduces false signals with volume analysis
- **Multi-Timeframe**: Internal analysis across multiple timeframes
- **Volatility Handling**: Designed for cryptocurrency volatility
**Weaknesses**:
- **Complexity**: More parameters to optimize
- **Market Noise**: Can be sensitive to short-term noise
- **Volume Dependency**: Requires reliable volume data
**Optimal Conditions**:
- High-volume cryptocurrency markets
- Markets with clear regime shifts
- Sufficient data for regime detection
## Usage Examples
### Single Strategy Backtests
```bash
# Default strategy on 15-minute timeframe
uv run .\main.py .\configs\config_default.json
# Default strategy on 5-minute timeframe
uv run .\main.py .\configs\config_default_5min.json
# BBRS strategy with market regime detection
uv run .\main.py .\configs\config_bbrs.json
```
### Multi-Strategy Backtests
```bash
# Combined strategies with weighted consensus
uv run .\main.py .\configs\config_combined.json
```
### Custom Configurations
**Aggressive Default Strategy**:
```json
{
"name": "default",
"params": {
"timeframe": "5min", // Faster signals
"stop_loss_pct": 0.02 // Tighter stop-loss
}
}
```
**Conservative BBRS Strategy**:
```json
{
"name": "bbrs",
"params": {
"bb_width": 0.03, // Tighter BB width
"stop_loss_pct": 0.07, // Wider stop-loss
"SqueezeStrategy": false // Disable squeeze for simplicity
}
}
```
## Development Guidelines
### Creating New Strategies
1. **Inherit from StrategyBase** :
```python
from cycles.strategies.base import StrategyBase, StrategySignal
class NewStrategy(StrategyBase):
def __init__ (self, weight=1.0, params=None):
super().__init__("new_strategy", weight, params)
```
2. **Specify Timeframes** :
```python
def get_timeframes(self):
return ["1h"] # Specify required timeframes
```
3. **Implement Core Methods** :
```python
def initialize(self, backtester):
self._resample_data(backtester.original_df)
# Calculate indicators...
self.initialized = True
def get_entry_signal(self, backtester, df_index):
# Entry logic...
return StrategySignal("ENTRY", confidence=0.8)
def get_exit_signal(self, backtester, df_index):
# Exit logic...
return StrategySignal("EXIT", confidence=1.0)
```
4. **Register Strategy** :
```python
# In StrategyManager._load_strategies()
elif name == "new_strategy":
strategies.append(NewStrategy(weight, params))
```
### Timeframe Best Practices
1. **Minimize Timeframe Requirements** :
```python
def get_timeframes(self):
return ["15min"] # Only what's needed
```
2. **Include 1min for Stop-Loss** :
```python
def get_timeframes(self):
primary_tf = self.params.get("timeframe", "15min")
timeframes = [primary_tf]
if "1min" not in timeframes:
timeframes.append("1min")
return timeframes
```
3. **Handle Multi-Timeframe Synchronization** :
```python
def get_entry_signal(self, backtester, df_index):
# Get current timestamp from primary timeframe
primary_data = self.get_primary_timeframe_data()
current_time = primary_data.index[df_index]
# Map to other timeframes
hourly_data = self.get_data_for_timeframe("1h")
h1_idx = hourly_data.index.get_indexer([current_time], method='ffill')[0]
```
## Testing and Validation
### Strategy Testing Workflow
1. **Individual Strategy Testing** :
- Test each strategy independently
- Validate on different timeframes
- Check edge cases and data sufficiency
2. **Multi-Strategy Testing** :
- Test strategy combinations
- Validate combination rules
- Monitor for signal conflicts
3. **Timeframe Validation** :
- Ensure consistent behavior across timeframes
- Validate data alignment
- Check memory usage with large datasets
### Performance Monitoring
```python
# Get strategy summary
summary = strategy_manager.get_strategy_summary()
print(f"Strategies: {[s['name'] for s in summary['strategies']]}")
print(f"Timeframes: {summary['all_timeframes']}")
# Monitor individual strategy performance
for strategy in strategy_manager.strategies:
print(f"{strategy.name}: {strategy.get_timeframes()}")
```
## Advanced Topics
### Multi-Timeframe Strategy Development
For strategies requiring multiple timeframes:
```python
class MultiTimeframeStrategy(StrategyBase):
def get_timeframes(self):
return ["5min", "15min", "1h"]
def get_entry_signal(self, backtester, df_index):
# Analyze multiple timeframes
data_5m = self.get_data_for_timeframe("5min")
data_15m = self.get_data_for_timeframe("15min")
data_1h = self.get_data_for_timeframe("1h")
# Synchronize across timeframes
current_time = data_5m.index[df_index]
idx_15m = data_15m.index.get_indexer([current_time], method='ffill')[0]
idx_1h = data_1h.index.get_indexer([current_time], method='ffill')[0]
# Multi-timeframe logic
short_signal = self._analyze_5min(data_5m, df_index)
medium_signal = self._analyze_15min(data_15m, idx_15m)
long_signal = self._analyze_1h(data_1h, idx_1h)
# Combine signals with appropriate confidence
if short_signal and medium_signal and long_signal:
return StrategySignal("ENTRY", confidence=0.9)
elif short_signal and medium_signal:
return StrategySignal("ENTRY", confidence=0.7)
else:
return StrategySignal("HOLD", confidence=0.0)
```
### Strategy Optimization
1. **Parameter Optimization** : Systematic testing of strategy parameters
2. **Timeframe Optimization** : Finding optimal timeframes for each strategy
3. **Combination Optimization** : Optimizing weights and combination rules
4. **Market Regime Adaptation** : Adapting strategies to different market conditions
For detailed timeframe system documentation, see [Timeframe System ](./timeframe_system.md ).