from BitcoinPricePredictor import BitcoinPricePredictor from tensorflow.keras.models import load_model from sklearn.metrics import confusion_matrix if __name__ == "__main__": model = load_model('models/model_2025-01-21_04-49-43.h5') predictor = BitcoinPricePredictor(model=model, db_path='databases/bitcoin_historical_data.db') missing_data = predictor.load_new_data_from_model() print(f"missing data {len(missing_data)}") if not missing_data.empty: predictions, reality = predictor.make_predictions_w_reality(missing_data) print(f"predictions {len(predictions)}") cm = confusion_matrix(reality, predictions[1:]) print("Confusion Matrix:") print(cm) else: print("No new data found.")