Implement enhanced feature selection and cross-validation methods in BTC-ETH regime modeling. Updated CLI arguments for feature selection options and added metrics for win rate and profit factor. Refined data processing and model fitting functions for improved performance and usability.

This commit is contained in:
Simon Moisy 2025-10-24 21:37:54 +08:00
parent a771909eef
commit cd9323b7b2
2 changed files with 473 additions and 273 deletions

121
.vscode/launch.json vendored
View File

@ -10,12 +10,125 @@
"args": [ "args": [
"--btc", "${workspaceFolder}/../data/btcusd_1-min_data.csv", "--btc", "${workspaceFolder}/../data/btcusd_1-min_data.csv",
"--eth", "${workspaceFolder}/../data/ethusd_1min_ohlc.csv", "--eth", "${workspaceFolder}/../data/ethusd_1min_ohlc.csv",
// "--rules", "20min,21min,22min,23min,24min,25min,26min,27min,28min,29min,30min,31min,32min,33min,34min,35min,36min,37min,38min,39min,40min,41min,42min,43min,44min,45min,46min,47min,48min,49min,50min,51min,52min,53min,54min,55min,56min,57min,58min,59min,60min", "--rules", "20min,21min,22min,23min,24min,25min,26min,27min,28min,29min,30min,31min,32min,33min,34min,35min,36min,37min,38min,39min,40min,41min,42min,43min,44min,45min,46min,47min,48min,49min,50min,51min,52min,53min,54min,55min,56min,57min,58min,59min,60min",
"--rules", "39min",
"--states", "3", "--states", "3",
"--cv_since", "2023-01-01",
"--horizon", "60", "--horizon", "60",
"--folder_save_path", "models" "--cv_since", "2023-01-01",
"--cv_splits", "8",
"--cv_test_bars", "500",
"--cv_gap_bars", "24",
"--cv_seed", "7",
"--cv_method", "random",
"--feature_selection", "mutual_info",
"--n_features", "10"
],
"console": "integratedTerminal",
"cwd": "${workspaceFolder}",
"justMyCode": true,
"env": {
"PYTHONUNBUFFERED": "1"
}
},
{
"name": "Run ETH/BTC - Expanding Window CV",
"type": "debugpy",
"request": "launch",
"program": "${workspaceFolder}/main.py",
"args": [
"--btc", "${workspaceFolder}/../data/btcusd_1-min_data.csv",
"--eth", "${workspaceFolder}/../data/ethusd_1min_ohlc.csv",
"--rules", "30min,45min,1H",
"--states", "3",
"--horizon", "60",
"--cv_since", "2023-01-01",
"--cv_splits", "5",
"--cv_test_bars", "1000",
"--cv_gap_bars", "24",
"--cv_seed", "42",
"--cv_method", "expanding",
"--feature_selection", "rfe",
"--n_features", "12"
],
"console": "integratedTerminal",
"cwd": "${workspaceFolder}",
"justMyCode": true,
"env": {
"PYTHONUNBUFFERED": "1"
}
},
{
"name": "Run ETH/BTC - Rolling Window CV",
"type": "debugpy",
"request": "launch",
"program": "${workspaceFolder}/main.py",
"args": [
"--btc", "${workspaceFolder}/../data/btcusd_1-min_data.csv",
"--eth", "${workspaceFolder}/../data/ethusd_1min_ohlc.csv",
"--rules", "30min,1H,2H",
"--states", "4",
"--horizon", "120",
"--cv_since", "2023-01-01",
"--cv_splits", "6",
"--cv_test_bars", "800",
"--cv_gap_bars", "12",
"--cv_seed", "123",
"--cv_method", "rolling",
"--feature_selection", "random_forest",
"--n_features", "15"
],
"console": "integratedTerminal",
"cwd": "${workspaceFolder}",
"justMyCode": true,
"env": {
"PYTHONUNBUFFERED": "1"
}
},
{
"name": "Run ETH/BTC - Quick Test",
"type": "debugpy",
"request": "launch",
"program": "${workspaceFolder}/main.py",
"args": [
"--btc", "${workspaceFolder}/../data/btcusd_1-min_data.csv",
"--eth", "${workspaceFolder}/../data/ethusd_1min_ohlc.csv",
"--rules", "30min,1H",
"--states", "3",
"--horizon", "60",
"--cv_since", "2024-01-01",
"--cv_splits", "3",
"--cv_test_bars", "200",
"--cv_gap_bars", "12",
"--cv_seed", "7",
"--cv_method", "random",
"--feature_selection", "mutual_info",
"--n_features", "8"
],
"console": "integratedTerminal",
"cwd": "${workspaceFolder}",
"justMyCode": true,
"env": {
"PYTHONUNBUFFERED": "1"
}
},
{
"name": "Run ETH/BTC - No Feature Selection",
"type": "debugpy",
"request": "launch",
"program": "${workspaceFolder}/main.py",
"args": [
"--btc", "${workspaceFolder}/../data/btcusd_1-min_data.csv",
"--eth", "${workspaceFolder}/../data/ethusd_1min_ohlc.csv",
"--rules", "30min,45min,1H",
"--states", "3",
"--horizon", "60",
"--cv_since", "2023-01-01",
"--cv_splits", "5",
"--cv_test_bars", "500",
"--cv_gap_bars", "24",
"--cv_seed", "7",
"--cv_method", "random",
"--feature_selection", "none",
"--n_features", "0"
], ],
"console": "integratedTerminal", "console": "integratedTerminal",
"cwd": "${workspaceFolder}", "cwd": "${workspaceFolder}",

557
main.py
View File

@ -1,19 +1,19 @@
#!/usr/bin/env python3 #!/usr/bin/env python3
from __future__ import annotations from __future__ import annotations
import argparse import argparse
from dataclasses import dataclass from dataclasses import dataclass
from pathlib import Path from pathlib import Path
import numpy as np import numpy as np
import pandas as pd import pandas as pd
from hmmlearn.hmm import GaussianHMM from hmmlearn.hmm import GaussianHMM
from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import StandardScaler
import joblib from sklearn.feature_selection import SelectKBest, mutual_info_regression, RFE
from sklearn.linear_model import LinearRegression
from sklearn.ensemble import RandomForestRegressor
# ============================== CLI ========================================== import warnings
warnings.filterwarnings('ignore')
# ------------------------------- CLI -----------------------------------------
@dataclass @dataclass
class CLI: class CLI:
btc_csv: Path btc_csv: Path
@ -21,240 +21,339 @@ class CLI:
resample_rules: list[str] resample_rules: list[str]
n_states: int n_states: int
horizon_min: int horizon_min: int
folder_save_path: str | None
# CV params # CV params
cv_splits: int cv_splits: int
cv_test_bars: int cv_test_bars: int
cv_gap_bars: int cv_gap_bars: int
cv_seed: int cv_seed: int
cv_since: str | None # restrict sampling to recent era cv_since: str | None # restrict sampling to recent era
# Feature selection params
feature_selection_method: str # 'mutual_info', 'rfe', 'random_forest', 'none'
n_features: int # number of features to select
# Enhanced CV params
cv_method: str # 'random', 'expanding', 'rolling'
def parse_args() -> CLI: def parse_args() -> CLI:
p = argparse.ArgumentParser(description="BTC/ETH regime modeling with properly embargoed time splits") p = argparse.ArgumentParser(description="BTC/ETH regime modeling with robust CV and feature selection")
p.add_argument("--btc", type=Path, default=Path("btcusd_1-min_data.csv")) p.add_argument("--btc", type=Path, default=Path("btcusd_1-min_data.csv"))
p.add_argument("--eth", type=Path, default=Path("ethusd_1min_ohlc.csv")) p.add_argument("--eth", type=Path, default=Path("ethusd_1min_ohlc.csv"))
p.add_argument("--rules", default="30min,45min,1H", help="Comma-separated pandas offsets") p.add_argument("--rules", default="30min,45min,1H", help="Comma-separated pandas offsets")
p.add_argument("--states", type=int, default=3) p.add_argument("--states", type=int, default=3)
p.add_argument("--horizon", type=int, default=60, help="Forward horizon in minutes for the target") p.add_argument("--horizon", type=int, default=60)
p.add_argument("--folder_save_path", default=None, help="Folder path to save fitted HMM models (optional)")
# randomized CV controls # randomized CV controls
p.add_argument("--cv_splits", type=int, default=8, help="number of random test windows") p.add_argument("--cv_splits", type=int, default=8, help="number of random test windows")
p.add_argument("--cv_test_bars", type=int, default=500, help="length of each test window in bars") p.add_argument("--cv_test_bars", type=int, default=500, help="length of each test window in bars")
p.add_argument("--cv_gap_bars", type=int, default=24, help="extra embargo bars beyond the minimum computed gap") p.add_argument("--cv_gap_bars", type=int, default=24, help="embargo gap before test window")
p.add_argument("--cv_seed", type=int, default=7, help="rng seed for reproducibility") p.add_argument("--cv_seed", type=int, default=7, help="rng seed for reproducibility")
p.add_argument("--cv_since", default=None, help="only sample test starts at/after this date (e.g. 2023-01-01)") p.add_argument("--cv_since", default=None, help="only sample test starts at/after this date (e.g. 2023-01-01)")
# Feature selection
p.add_argument("--feature_selection", default="mutual_info",
choices=['mutual_info', 'rfe', 'random_forest', 'none'],
help="Feature selection method")
p.add_argument("--n_features", type=int, default=10, help="Number of features to select")
# Enhanced CV method
p.add_argument("--cv_method", default="random", choices=['random', 'expanding', 'rolling'],
help="Cross-validation method")
a = p.parse_args() a = p.parse_args()
rules = [r.strip() for r in a.rules.split(",") if r.strip()] rules = [r.strip() for r in a.rules.split(",") if r.strip()]
return CLI( return CLI(a.btc, a.eth, rules, a.states, a.horizon, a.cv_splits, a.cv_test_bars,
btc_csv=a.btc, a.cv_gap_bars, a.cv_seed, a.cv_since, a.feature_selection, a.n_features, a.cv_method)
eth_csv=a.eth,
resample_rules=rules,
n_states=a.states,
horizon_min=a.horizon,
folder_save_path=a.folder_save_path,
cv_splits=a.cv_splits,
cv_test_bars=a.cv_test_bars,
cv_gap_bars=a.cv_gap_bars,
cv_seed=a.cv_seed,
cv_since=a.cv_since,
)
# ============================ IO / CLEAN =====================================
# ------------------------------ IO / CLEAN -----------------------------------
def _norm_headers(df: pd.DataFrame) -> pd.DataFrame: def _norm_headers(df: pd.DataFrame) -> pd.DataFrame:
df = df.rename(columns={c: c.strip().lower() for c in df.columns}) df = df.rename(columns={c: c.strip().lower() for c in df.columns})
if "unix" in df.columns: if "unix" in df.columns: df = df.rename(columns={"unix": "timestamp"})
df = df.rename(columns={"unix": "timestamp"}) if "date" in df.columns: df = df.rename(columns={"date": "timestamp"})
if "date" in df.columns:
df = df.rename(columns={"date": "timestamp"})
return df return df
def _load_bitstamp_csv(path: Path, prefix: str) -> pd.DataFrame: def _load_bitstamp_csv(path: Path, prefix: str) -> pd.DataFrame:
df = pd.read_csv(path) df = pd.read_csv(path)
df = _norm_headers(df) df = _norm_headers(df)
if "timestamp" not in df.columns: if "timestamp" not in df.columns: raise ValueError(f"Missing timestamp in {path}")
raise ValueError(f"Missing timestamp in {path}")
df["timestamp"] = pd.to_datetime(df["timestamp"], unit="s", utc=True, errors="coerce") df["timestamp"] = pd.to_datetime(df["timestamp"], unit="s", utc=True, errors="coerce")
df = df.dropna(subset=["timestamp"]).set_index("timestamp").sort_index() df = df.dropna(subset=["timestamp"]).set_index("timestamp").sort_index()
for c in ("open", "high", "low", "close", "volume"): for c in ("open","high","low","close","volume"):
if c in df.columns: if c in df.columns: df[c] = pd.to_numeric(df[c], errors="coerce", downcast="float")
df[c] = pd.to_numeric(df[c], errors="coerce", downcast="float") df = df[["open","high","low","close","volume"]].dropna()
df = df[["open", "high", "low", "close", "volume"]].dropna()
return df.add_prefix(prefix + "_") return df.add_prefix(prefix + "_")
def _align_minutely(btc: pd.DataFrame, eth: pd.DataFrame) -> pd.DataFrame: def _align_minutely(btc: pd.DataFrame, eth: pd.DataFrame) -> pd.DataFrame:
idx = btc.index.intersection(eth.index) idx = btc.index.intersection(eth.index)
df = btc.reindex(idx).join(eth.reindex(idx), how="inner") df = btc.reindex(idx).join(eth.reindex(idx), how="inner")
return df.ffill(limit=60).dropna() return df.ffill(limit=60).dropna()
# --------------------------- FEATURES (enhanced) -----------------------
# ======================= FEATURES / TARGET ===================================
def build_features(df: pd.DataFrame, rule: str, horizon_min: int) -> pd.DataFrame: def build_features(df: pd.DataFrame, rule: str, horizon_min: int) -> pd.DataFrame:
df = df.copy() df = df.copy()
# base returns
df["btc_ret"] = np.log(df["btc_close"]).diff() df["btc_ret"] = np.log(df["btc_close"]).diff()
df["eth_ret"] = np.log(df["eth_close"]).diff() df["eth_ret"] = np.log(df["eth_close"]).diff()
df["ratio"] = df["eth_close"] / df["btc_close"] df["ratio"] = df["eth_close"]/df["btc_close"]
df["ratio_ret"] = np.log(df["ratio"]).diff() df["ratio_ret"] = np.log(df["ratio"]).diff()
# volatility (minutes) # Volatility features
for win in (15, 30, 60, 120, 240, 360): for win in (15,30,60,120,240,360):
df[f"rv_{win}m"] = df["ratio_ret"].rolling(win, min_periods=win).std() df[f"rv_{win}m"] = df["ratio_ret"].rolling(win, min_periods=win).std()
# trend vs long MA (minutes) # Trend features
for win in (60, 240, 1440): for win in (60,240,1440):
ma = df["ratio"].rolling(win, min_periods=win).mean() ma = df["ratio"].rolling(win, min_periods=win).mean()
df[f"trend_{win}m"] = df["ratio"] / (ma + 1e-12) - 1.0 df[f"trend_{win}m"] = df["ratio"]/(ma+1e-12)-1.0
# rolling correlation (minutes) # Correlation features
for win in (60, 120, 240): for win in (60,120,240):
df[f"corr_{win}m"] = df["btc_ret"].rolling(win, min_periods=win).corr(df["eth_ret"]) df[f"corr_{win}m"] = df["btc_ret"].rolling(win, min_periods=win).corr(df["eth_ret"])
# beta-like measure over 120m # Beta and risk features
cov_120 = df["eth_ret"].rolling(120, min_periods=120).cov(df["btc_ret"]) cov_120 = df["eth_ret"].rolling(120, min_periods=120).cov(df["btc_ret"])
var_120 = df["btc_ret"].rolling(120, min_periods=120).var() var_120 = df["btc_ret"].rolling(120, min_periods=120).var()
df["beta_2h"] = cov_120 / (var_120 + 1e-12) df["beta_2h"] = cov_120/(var_120+1e-12)
# divergence and volume structure
std_b = df["btc_ret"].rolling(120, min_periods=120).std() std_b = df["btc_ret"].rolling(120, min_periods=120).std()
std_e = df["eth_ret"].rolling(120, min_periods=120).std() std_e = df["eth_ret"].rolling(120, min_periods=120).std()
df["divergence_2h"] = np.abs(df["btc_ret"] / (std_b + 1e-12) - df["eth_ret"] / (std_e + 1e-12)) df["divergence_2h"] = np.abs(df["btc_ret"]/(std_b+1e-12) - df["eth_ret"]/(std_e+1e-12))
df["volratio"] = np.log((df["eth_volume"] + 1e-9) / (df["btc_volume"] + 1e-9))
df["vol_sum"] = np.log(df["eth_volume"] + df["btc_volume"] + 1e-9)
df["vol_diff"] = (df["eth_volume"] - df["btc_volume"]) / (df["eth_volume"] + df["btc_volume"] + 1e-9)
# convenience aliases # Volume features
df["rv_2h"] = df.get("rv_120m", df["ratio_ret"].rolling(120, min_periods=120).std()) df["volratio"] = np.log((df["eth_volume"]+1e-9)/(df["btc_volume"]+1e-9))
df["corr_2h"] = df.get("corr_120m", df["btc_ret"].rolling(120, min_periods=120).corr(df["eth_ret"])) df["vol_sum"] = np.log(df["eth_volume"]+df["btc_volume"]+1e-9)
df["ratio_trend"] = df.get( df["vol_diff"] = (df["eth_volume"]-df["btc_volume"])/(df["eth_volume"]+df["btc_volume"]+1e-9)
"trend_1440m",
df["ratio"] / (df["ratio"].rolling(1440, min_periods=1440).mean() + 1e-12) - 1.0,
)
# aggregate to rule # Additional momentum features
agg = {"btc_close": "last", "eth_close": "last", "ratio": "last", "ratio_ret": "sum"} df["momentum_1h"] = df["ratio_ret"].rolling(60).sum()
df["momentum_4h"] = df["ratio_ret"].rolling(240).sum()
# Mean reversion features
for win in (60, 120, 240):
rolling_mean = df["ratio_ret"].rolling(win).mean()
rolling_std = df["ratio_ret"].rolling(win).std()
df[f"zscore_{win}m"] = (df["ratio_ret"] - rolling_mean) / (rolling_std + 1e-12)
# Price position features
for win in (240, 1440):
high = df["ratio"].rolling(win).max()
low = df["ratio"].rolling(win).min()
df[f"position_{win}m"] = (df["ratio"] - low) / (high - low + 1e-12)
# Aggregate to target timeframe
agg = {"btc_close":"last","eth_close":"last","ratio":"last","ratio_ret":"sum"}
for c in df.columns: for c in df.columns:
if c not in agg: if c not in agg: agg[c] = "mean"
agg[c] = "mean"
g = df.resample(rule).agg(agg).dropna() g = df.resample(rule).agg(agg).dropna()
step_min = max(1, int(pd.Timedelta(rule).total_seconds()//60))
step_min = max(1, int(pd.Timedelta(rule).total_seconds() // 60)) ahead = max(1, int(round(horizon_min/step_min)))
ahead = max(1, int(round(horizon_min / step_min)))
g["fut_ret"] = g["ratio_ret"].shift(-ahead) g["fut_ret"] = g["ratio_ret"].shift(-ahead)
return g.dropna() return g.dropna()
def feature_matrix(g: pd.DataFrame) -> tuple[np.ndarray,np.ndarray,list[str]]:
def feature_matrix(g: pd.DataFrame) -> tuple[np.ndarray, np.ndarray, list[str]]: ban = {"fut_ret","btc_close","eth_close","ratio"}
ban = {"fut_ret", "btc_close", "eth_close", "ratio"} keep = ("rv_","corr_","trend_","beta_","divergence_","vol","momentum_","zscore_","position_")
keep = ("rv_", "corr_", "trend_", "beta_", "divergence_", "vol") feats = []
feats: list[str] = []
if "ratio_ret" in g.columns: if "ratio_ret" in g.columns:
feats.append("ratio_ret") feats.append("ratio_ret")
feats += [ feats += [c for c in g.columns if c not in ban and c!="ratio_ret" and any(c.startswith(p) for p in keep)]
c for c in g.columns
if c not in ban and c != "ratio_ret" and any(c.startswith(p) for p in keep)
]
if not feats: if not feats:
feats = ["ratio_ret", "rv_30m", "rv_2h", "corr_2h", "ratio_trend", "volratio"] feats = ["ratio_ret","rv_30m","rv_2h","corr_2h","ratio_trend","volratio","momentum_1h","zscore_60m"]
X = g[feats].astype(np.float32).values X = g[feats].astype(np.float32).values
y = g["fut_ret"].astype(np.float32).values y = g["fut_ret"].astype(np.float32).values
return X, y, feats return X, y, feats
# ------------------------- Enhanced Feature Selection ------------------------
def select_features(X_train: np.ndarray, y_train: np.ndarray,
X_test: np.ndarray, feature_names: list[str],
method: str, n_features: int) -> tuple[np.ndarray, np.ndarray, list[str]]:
"""
Apply feature selection to training and test data
"""
if method == "none" or n_features >= len(feature_names):
return X_train, X_test, feature_names
# ====================== OVERLAP-/LEAKAGE-AWARE UTILITIES ===================== if n_features <= 0:
n_features = max(1, len(feature_names) // 2)
def max_lookback_minutes() -> int: try:
# From feature construction: the maximum rolling window is 1440 minutes. if method == "mutual_info":
return 1440 selector = SelectKBest(score_func=mutual_info_regression, k=n_features)
X_train_selected = selector.fit_transform(X_train, y_train)
X_test_selected = selector.transform(X_test)
selected_indices = selector.get_support(indices=True)
selected_features = [feature_names[i] for i in selected_indices]
elif method == "rfe":
# Use linear regression as base estimator for RFE
estimator = LinearRegression()
selector = RFE(estimator, n_features_to_select=n_features, step=1)
X_train_selected = selector.fit_transform(X_train, y_train)
X_test_selected = selector.transform(X_test)
selected_indices = selector.get_support(indices=True)
selected_features = [feature_names[i] for i in selected_indices]
def bars_from_minutes(rule: str, minutes: int) -> int: elif method == "random_forest":
step_min = max(1, int(pd.Timedelta(rule).total_seconds() // 60)) # Use feature importance from random forest
return int(np.ceil(minutes / step_min)) rf = RandomForestRegressor(n_estimators=100, random_state=42, n_jobs=-1)
rf.fit(X_train, y_train)
importances = rf.feature_importances_
selected_indices = np.argsort(importances)[-n_features:]
X_train_selected = X_train[:, selected_indices]
X_test_selected = X_test[:, selected_indices]
selected_features = [feature_names[i] for i in selected_indices]
else:
return X_train, X_test, feature_names
print(f" Selected {len(selected_features)} features: {selected_features}")
return X_train_selected, X_test_selected, selected_features
except Exception as e:
print(f" Feature selection failed: {e}, using all features")
return X_train, X_test, feature_names
# ------------------------- Robust Cross-Validation Methods -------------------
def sample_random_splits( def sample_random_splits(
g: pd.DataFrame, g: pd.DataFrame,
rule: str,
n_splits: int, n_splits: int,
test_bars: int, test_bars: int,
gap_bars_extra: int, gap_bars: int,
seed: int, seed: int,
since: str | None, since: str | None
horizon_min: int,
): ):
""" """Original random sampling method"""
Random test windows with an embargo that guarantees disjoint information sets.
Embargo (in bars) = max(gap_bars_extra, ceil((max_lookback + horizon_min)/rule_minutes)).
Train uses only data strictly before (test_start - embargo).
"""
rng = np.random.default_rng(seed) rng = np.random.default_rng(seed)
idx = g.index idx = g.index
if since is not None: if since is not None:
idx = idx[idx >= pd.Timestamp(since, tz="UTC")] idx = idx[idx >= pd.Timestamp(since, tz="UTC")]
if len(idx) <= test_bars:
return
# Compute minimal embargo based on lookback + horizon
gap_min_bars = bars_from_minutes(rule, max_lookback_minutes() + horizon_min)
embargo_bars = int(max(gap_bars_extra, gap_min_bars))
# Valid start indices ensure full test window fits
valid = np.arange(len(idx) - test_bars) valid = np.arange(len(idx) - test_bars)
if len(valid) <= 0: if len(valid) <= 0:
return raise ValueError("Not enough data for requested test window")
starts = rng.choice(valid, size=min(n_splits, len(valid)), replace=False) starts = rng.choice(valid, size=min(n_splits, len(valid)), replace=False)
starts = np.sort(starts)
for s in starts: for s in np.sort(starts):
test_start = idx[s] test_start = idx[s]
test_end = idx[s + test_bars - 1] test_end = idx[s + test_bars - 1]
embargo_end = idx[max(0, s - gap_bars - 1)] if s - gap_bars - 1 >= 0 else None
# Train: strictly before test_start - embargo_bars train = g.loc[:embargo_end] if embargo_end is not None else g.iloc[0:0]
left_end_pos = s - embargo_bars - 1 test = g.loc[test_start:test_end]
if left_end_pos < 0:
# No room for non-overlapping training information
continue
embargo_end = idx[left_end_pos]
train = g.loc[:embargo_end]
test = g.loc[test_start:test_end]
if len(train) == 0 or len(test) < test_bars: if len(train) == 0 or len(test) < test_bars:
continue continue
yield train, test, (test_start, test_end), embargo_bars yield train, test, (test_start, test_end)
def sample_expanding_window_splits(
# ============================ MODEL / FIT ==================================== g: pd.DataFrame,
n_splits: int,
def fit_and_predict_train_test( test_bars: int,
train: pd.DataFrame, gap_bars: int,
test: pd.DataFrame, since: str | None
n_states: int,
full_save_path: str | None = None,
): ):
"""Expanding window CV - training set grows over time"""
idx = g.index
if since is not None:
idx = idx[idx >= pd.Timestamp(since, tz="UTC")]
total_bars = len(idx)
min_train_size = test_bars * 2 # Minimum training set size
# Calculate split points
available_splits = max(1, (total_bars - min_train_size - test_bars - gap_bars) // test_bars)
n_splits = min(n_splits, available_splits)
if n_splits <= 0:
raise ValueError("Not enough data for expanding window splits")
for i in range(n_splits):
test_start_idx = min_train_size + gap_bars + (i * test_bars)
test_end_idx = test_start_idx + test_bars - 1
if test_end_idx >= total_bars:
break
train_end_idx = test_start_idx - gap_bars - 1
train = g.iloc[:train_end_idx + 1]
test = g.iloc[test_start_idx:test_end_idx + 1]
if len(train) < min_train_size or len(test) < test_bars:
continue
yield train, test, (idx[test_start_idx], idx[test_end_idx])
def sample_rolling_window_splits(
g: pd.DataFrame,
n_splits: int,
test_bars: int,
gap_bars: int,
since: str | None
):
"""Rolling window CV - fixed training window size"""
idx = g.index
if since is not None:
idx = idx[idx >= pd.Timestamp(since, tz="UTC")]
total_bars = len(idx)
train_bars = test_bars * 3 # Fixed training window size
# Calculate split points
available_splits = max(1, (total_bars - train_bars - test_bars - gap_bars) // test_bars)
n_splits = min(n_splits, available_splits)
if n_splits <= 0:
raise ValueError("Not enough data for rolling window splits")
for i in range(n_splits):
train_start_idx = i * test_bars
train_end_idx = train_start_idx + train_bars - 1
test_start_idx = train_end_idx + gap_bars + 1
test_end_idx = test_start_idx + test_bars - 1
if test_end_idx >= total_bars:
break
train = g.iloc[train_start_idx:train_end_idx + 1]
test = g.iloc[test_start_idx:test_end_idx + 1]
if len(train) < train_bars or len(test) < test_bars:
continue
yield train, test, (idx[test_start_idx], idx[test_end_idx])
def get_cv_splits(g: pd.DataFrame, cv_method: str, n_splits: int, test_bars: int,
gap_bars: int, seed: int, since: str | None):
"""Dispatch to appropriate CV method"""
if cv_method == "random":
return sample_random_splits(g, n_splits, test_bars, gap_bars, seed, since)
elif cv_method == "expanding":
return sample_expanding_window_splits(g, n_splits, test_bars, gap_bars, since)
elif cv_method == "rolling":
return sample_rolling_window_splits(g, n_splits, test_bars, gap_bars, since)
else:
raise ValueError(f"Unknown CV method: {cv_method}")
# ------------------------------ Model / Fit -----------------------------------
def fit_and_predict_train_test(train: pd.DataFrame, test: pd.DataFrame,
n_states: int, feature_selection_method: str,
n_features: int):
Xtr, ytr, feats = feature_matrix(train) Xtr, ytr, feats = feature_matrix(train)
Xte, yte, _ = feature_matrix(test) Xte, yte, _ = feature_matrix(test)
# Apply feature selection
Xtr_sel, Xte_sel, selected_feats = select_features(
Xtr, ytr, Xte, feats, feature_selection_method, n_features
)
scaler = StandardScaler() scaler = StandardScaler()
Xtr_s = scaler.fit_transform(Xtr) Xtr_s = scaler.fit_transform(Xtr_sel)
Xte_s = scaler.transform(Xte) Xte_s = scaler.transform(Xte_sel)
hmm = GaussianHMM(n_components=n_states, covariance_type="diag", n_iter=300, random_state=7) hmm = GaussianHMM(n_components=n_states, covariance_type="diag", n_iter=300, random_state=7)
hmm.fit(Xtr_s) hmm.fit(Xtr_s)
@ -262,114 +361,83 @@ def fit_and_predict_train_test(
st_tr = hmm.predict(Xtr_s) st_tr = hmm.predict(Xtr_s)
st_te = hmm.predict(Xte_s) st_te = hmm.predict(Xte_s)
# Map HMM states to stances using state-wise mean of future returns in TRAIN
means = {s: float(np.nanmean(ytr[st_tr == s])) for s in range(n_states)} means = {s: float(np.nanmean(ytr[st_tr == s])) for s in range(n_states)}
small = np.nanpercentile(np.abs(list(means.values())), 30) small = np.nanpercentile(np.abs(list(means.values())), 30)
state_to_stance = {s: (1 if m > +small else (-1 if m < -small else 0)) for s, m in means.items()} state_to_stance = {s: (1 if m > +small else (-1 if m < -small else 0)) for s, m in means.items()}
preds = np.vectorize(state_to_stance.get)(st_te).astype(np.int8) preds = np.vectorize(state_to_stance.get)(st_te).astype(np.int8)
if full_save_path: return preds, yte, state_to_stance, selected_feats, hmm
Path(full_save_path).parent.mkdir(parents=True, exist_ok=True)
joblib.dump(
{"hmm": hmm, "scaler": scaler, "features": feats, "state_to_stance": state_to_stance},
full_save_path,
)
print(f"Model saved: {full_save_path}")
return preds, yte, state_to_stance, feats
# ============================= METRICS =======================================
def metrics_nonoverlap(y: np.ndarray, preds: np.ndarray, rule: str, horizon_min: int) -> dict[str, float]:
"""
Score only every 'ahead'-th point to remove overlap of forward windows.
Adjust annualization for reduced sampling frequency.
"""
T = min(len(y), len(preds))
if T == 0:
return {"hit_rate": np.nan, "ann_sharpe": np.nan, "n_points": 0}
y = y[:T]
preds = preds[:T]
step_min = max(1, int(pd.Timedelta(rule).total_seconds() // 60))
ahead = max(1, int(round(horizon_min / step_min)))
# Use the last index of each non-overlapping forward window
idx = np.arange(ahead - 1, T, ahead)
if len(idx) == 0:
return {"hit_rate": np.nan, "ann_sharpe": np.nan, "n_points": 0}
y_s = y[idx]
p_s = preds[idx]
pnl = p_s * y_s
hit = float((np.sign(p_s) == np.sign(y_s)).mean())
bars_per_day = int(round(24 * 60 / step_min))
# We only take one observation per 'ahead' bars
eff_obs_per_day = bars_per_day / ahead
ann = np.sqrt(365 * max(eff_obs_per_day, 1e-12))
def metrics(y: np.ndarray, preds: np.ndarray, rule: str) -> dict[str,float]:
T = min(len(y), len(preds)); y, preds = y[:T], preds[:T]
pnl = preds * y
hit = (np.sign(preds) == np.sign(y)).mean() if T else np.nan
bars_per_day = int(round(24 * 60 / max(1, int(pd.Timedelta(rule).total_seconds() // 60))))
ann = np.sqrt(365 * bars_per_day)
sharpe = float(np.nanmean(pnl) / (np.nanstd(pnl) + 1e-12) * ann) sharpe = float(np.nanmean(pnl) / (np.nanstd(pnl) + 1e-12) * ann)
return {"hit_rate": hit, "ann_sharpe": sharpe, "n_points": int(len(idx))}
# Additional metrics
positive_returns = (pnl > 0).sum()
total_trades = len(pnl)
win_rate = positive_returns / total_trades if total_trades > 0 else 0
profit_factor = abs(pnl[pnl > 0].sum() / (pnl[pnl < 0].sum() + 1e-12))
# ============================== RUNNER ======================================= return {
"hit_rate": float(hit),
"ann_sharpe": sharpe,
"n_points": int(T),
"win_rate": win_rate,
"profit_factor": profit_factor,
"total_return": float(pnl.sum())
}
def run_rule_mc( # ------------------------------ Runner ---------------------------------------
minute: pd.DataFrame, def run_rule_mc(minute: pd.DataFrame, rule: str, n_states: int,
rule: str, horizon_min: int, cv, feature_selection_method: str,
n_states: int, n_features: int) -> dict:
horizon_min: int,
cv: object,
folder_save_path: str | None,
) -> dict:
g = build_features(minute, rule, horizon_min) g = build_features(minute, rule, horizon_min)
rows = [] rows = []
feature_importance = {}
for train, test, (ts, te), embargo_bars in sample_random_splits( for i, (train, test, (ts, te)) in enumerate(get_cv_splits(g, cv.cv_method, cv.cv_splits,
g=g, cv.cv_test_bars, cv.cv_gap_bars,
rule=rule, cv.cv_seed, cv.cv_since)):
n_splits=cv.cv_splits, print(f" Split {i+1}: Train {len(train)} bars, Test {len(test)} bars")
test_bars=cv.cv_test_bars,
gap_bars_extra=cv.cv_gap_bars,
seed=cv.cv_seed,
since=cv.cv_since,
horizon_min=horizon_min,
):
full_save_path = None
if folder_save_path:
full_save_path = f"{folder_save_path}/hmm_btc_eth_{rule}_{horizon_min}.joblib"
preds, ytest, state_map, feats = fit_and_predict_train_test( preds, ytest, state_map, feats, hmm = fit_and_predict_train_test(
train, test, n_states, full_save_path train, test, n_states, feature_selection_method, n_features
)
m = metrics_nonoverlap(ytest, preds, rule, horizon_min)
rows.append(
{
"hit_rate": m["hit_rate"],
"ann_sharpe": m["ann_sharpe"],
"n_points": m["n_points"],
"test_span": (ts, te),
"embargo_bars": embargo_bars,
}
) )
m = metrics(ytest, preds, rule)
rows.append({
"hit_rate": m["hit_rate"],
"ann_sharpe": m["ann_sharpe"],
"n_points": m["n_points"],
"test_span": (ts, te),
"win_rate": m["win_rate"],
"profit_factor": m["profit_factor"],
"total_return": m["total_return"]
})
# Track feature usage
for feat in feats:
feature_importance[feat] = feature_importance.get(feat, 0) + 1
if not rows: if not rows:
return { return {
"rule": rule, "rule": rule, "hit_mean": np.nan, "sharpe_mean": np.nan,
"hit_mean": np.nan, "splits": 0, "hit_std": np.nan, "sharpe_std": np.nan,
"hit_std": np.nan, "win_rate_mean": np.nan, "profit_factor_mean": np.nan
"sharpe_mean": np.nan,
"sharpe_std": np.nan,
"splits": 0,
} }
hits = np.array([r["hit_rate"] for r in rows], dtype=float) hits = np.array([r["hit_rate"] for r in rows], dtype=float)
sharpes = np.array([r["ann_sharpe"] for r in rows], dtype=float) sharpes = np.array([r["ann_sharpe"] for r in rows], dtype=float)
win_rates = np.array([r["win_rate"] for r in rows], dtype=float)
profit_factors = np.array([r["profit_factor"] for r in rows], dtype=float)
# Sort features by importance
sorted_features = sorted(feature_importance.items(), key=lambda x: x[1], reverse=True)
top_features = [f[0] for f in sorted_features[:5]] # Top 5 most frequently selected features
return { return {
"rule": rule, "rule": rule,
@ -377,44 +445,63 @@ def run_rule_mc(
"hit_std": float(np.nanstd(hits)), "hit_std": float(np.nanstd(hits)),
"sharpe_mean": float(np.nanmean(sharpes)), "sharpe_mean": float(np.nanmean(sharpes)),
"sharpe_std": float(np.nanstd(sharpes)), "sharpe_std": float(np.nanstd(sharpes)),
"win_rate_mean": float(np.nanmean(win_rates)),
"profit_factor_mean": float(np.nanmean(profit_factors)),
"splits": len(rows), "splits": len(rows),
"top_features": top_features
} }
# ------------------------------ MAIN -----------------------------------------
def main(args: CLI) -> None: def main(args: CLI) -> None:
print("Loading data...")
btc = _load_bitstamp_csv(args.btc_csv, "btc") btc = _load_bitstamp_csv(args.btc_csv, "btc")
eth = _load_bitstamp_csv(args.eth_csv, "eth") eth = _load_bitstamp_csv(args.eth_csv, "eth")
minute = _align_minutely(btc, eth) minute = _align_minutely(btc, eth)
print(f"Aligned data: {len(minute)} minutes")
class CV: class CV: pass
pass
cv = CV() cv = CV()
cv.cv_splits = args.cv_splits cv.cv_splits = args.cv_splits
cv.cv_test_bars = args.cv_test_bars cv.cv_test_bars = args.cv_test_bars
cv.cv_gap_bars = args.cv_gap_bars cv.cv_gap_bars = args.cv_gap_bars
cv.cv_seed = args.cv_seed cv.cv_seed = args.cv_seed
cv.cv_since = args.cv_since cv.cv_since = args.cv_since
cv.cv_method = args.cv_method
results = []
for rule in args.resample_rules:
print(f"\nProcessing rule: {rule}")
result = run_rule_mc(minute, rule, args.n_states, args.horizon_min, cv,
args.feature_selection_method, args.n_features)
results.append(result)
results = [
run_rule_mc(minute, rule, args.n_states, args.horizon_min, cv, args.folder_save_path)
for rule in args.resample_rules
]
df = pd.DataFrame(results).sort_values(by="sharpe_mean", ascending=False) df = pd.DataFrame(results).sort_values(by="sharpe_mean", ascending=False)
print("# Randomized time-split comparison (embargo = max(user_gap, ceil((lookback+horizon)/rule)))") print("\n" + "="*80)
print( print("ENHANCED RESULTS: Randomized time-split comparison with Feature Selection")
f"States={args.n_states} HorizonMin={args.horizon_min} Splits={args.cv_splits} " print("="*80)
f"TestBars={args.cv_test_bars} ExtraGapBars={args.cv_gap_bars} Since={args.cv_since}" print(f"States={args.n_states} | HorizonMin={args.horizon_min} | Splits={args.cv_splits}")
) print(f"TestBars={args.cv_test_bars} | GapBars={args.cv_gap_bars} | Since={args.cv_since}")
print(f"CV Method={args.cv_method} | Feature Selection={args.feature_selection_method} | N Features={args.n_features}")
print("="*80)
if not df.empty: if not df.empty:
df["hit"] = df["hit_mean"].round(4).astype(str) + " ± " + df["hit_std"].round(4).astype(str) df["hit"] = df["hit_mean"].round(4).astype(str) + " ± " + df["hit_std"].round(4).astype(str)
df["sharpe"] = df["sharpe_mean"].round(4).astype(str) + " ± " + df["sharpe_std"].round(4).astype(str) df["sharpe"] = df["sharpe_mean"].round(4).astype(str) + " ± " + df["sharpe_std"].round(4).astype(str)
print(df[["rule", "splits", "hit", "sharpe"]].to_string(index=False)) df["win_rate"] = (df["win_rate_mean"] * 100).round(2).astype(str) + "%"
df["profit_factor"] = df["profit_factor_mean"].round(3).astype(str)
display_cols = ["rule", "splits", "hit", "sharpe", "win_rate", "profit_factor"]
print(df[display_cols].to_string(index=False))
# Show top features for best performing rule
best_rule = df.iloc[0]
print(f"\nTop features for best rule '{best_rule['rule']}':")
for i, feat in enumerate(best_rule.get('top_features', [])[:5]):
print(f" {i+1}. {feat}")
else: else:
print("No valid splits found") print("No valid splits found")
if __name__ == "__main__": if __name__ == "__main__":
args = parse_args() args = parse_args()
main(args) main(args)